Транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма

Вода - самое распространенное соединение в живых системах. Но содержание воды колеблется в широких пределах: от 10% (эмаль зубов), 20% (костная ткань), до 85% (головной мозг человека), в сухих семенах 10-12%, у медузы 95-98%, т.е. весь организм по существу состоит из воды. Потеря 20% воды приводит к гибели клетки или анабиозу.

Свойства воды уникальны, т.е. ни одно другое соединение не обладает ими. Это обусловлено строением ее молекул: один атом кислорода связан прочной ковалентной связью с двумя атомами водорода, т.е. Н 2 О – очень простое соединение. Атомы водорода присоединены к кислороду под углом 104,5 0 .

Рис.1. Строение молекулы воды.

Особенности физических свойств воды связаны со структурой её молекулы и особенностями межмолекулярных взаимодействий. Распределение электронной плотности в молекуле воды таково (рис.1, б, в), что создаются 4 полюса зарядов: 2 положительных, связанных с атомами водорода, и 2 отрицательных, связанных с электронными облаками электронов атома кислорода. Указанные 4 полюса зарядов располагаются в вершинах тетраэдра (рис. 1, г). Благодаря этому молекула воды дипольна, а четыре полюса зарядов позволяют каждой молекуле образовать четыре водородные связи с соседними (такими же) молекулами. В результате образуются кластеры (при мгновенном замораживании они похожи на красивые снежинки, рис.2.).

Рис.2. Образование кластера воды.

Кластеры образуют рабочую «структуру воды». Водородные связи слабые, в 15-20 раз слабее ковалентных. Поэтому одни связи легко рвутся, другие возникают. Вследствие этого молекулы очень подвижны. Любые внешние изменения (температуры, давления и т.д.) меняют эту рабочую структуру. Таким образом, вода обладает высокой чувствительностью и памятью.

Молекулы воды могут присоединяться к молекулам, несущим электронный заряд, в результате образуются гидраты. Если сила притяжения между молекулами воды меньше, чем притяжение воды к молекулам вещества – вещество растворяется.



Свойства и функции воды.

1. Связывает в единую систему всю живую и неживую природу на планете. Вода подвижна, изменчива, но меняется не химический состав молекул, а структура кластера.

2. Вода - универсальный растворитель. Из-за полярности она не имеет в этом себе равных: в воде растворяется больше веществ, чем в каких-либо других жидкостях. Вещества в клетку поступают и выводятся только в растворенном виде.

3. По отношению к воде вещества в клетке делятся на 2 группы:

а) гидрофобные (fobos – страх, ужас): нерастворимы в воде (жиры, полисахариды и др.)

б) гидрофильные (fileon – люблю): растворимы в воде (минеральные соли, кислоты, моносахариды и др.)

Благодаря этому свойству воды (за счет гидрофобных взаимодействий) в клетке собираются:

1) биологические мембраны,

2) белки и ДНК принимают форму спирали.

4. Для воды характерна высокая теплоемкость (т.е. чтобы поднять температуру воды и разорвать водородные связи требуется много энергии). Так температура кипения воды 100 0 С, а у спирта 70 0 С.

5. Высокая теплопроводность. Благодаря этому свойству в клетке и организме поддерживается тепловое равновесие.

6. Вода сама как химическое соединение участвует во многих химических реакциях. Например, реакции гидролиза идут за счет присоединения воды.

7. Является источником О 2 и Н + при фотосинтезе (фотолиз воды).

8. Вода – основная среда для транспорта веществ в клетке (диффузия) и организме (токи крови и лимфы, межтканевой жидкости, содержащими питательные вещества, О 2 и СО 2 , гормоны, вещества, включающие и выключающие работу генов). Это транспортная функция.

9. Обеспечивает объем и упругость клетки: тургорное и осмотическое давление, сохраняет форму клеток и организмов (гидроскелет у круглых и кольчатых червей).

10. Среда для оплодотворения.

11. Среда для жизни водных организмов.

12. Среда для развития зародышей животных (в амнионе).

13. Участвует в образовании смазочных жидкостей в суставах, плевральной полости, околосердечной сумке.

14. Образует слизи, обеспечивающие передвижение веществ по кишечнику, влажную среду на слизистых оболочках (чихание, кашель).

15. Участвует в образовании секретов (слюна, слезы, желчь, сперма и соли в организме).

16. Вода - лимитирующий фактор жизни на нашей планете. Всюду, где есть вода, есть жизнь, где нет воды – там нет жизни.















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: сформировать представление о целостной картине мира на примере вещества воды, осуществив интеграцию знаний учащихся, полученных в курсах физики, химии и биологии.

Задачи урока:

  1. Образовательные: усвоение всеми учащимися стандартного минимума фактических сведений о строении и функциях воды на всех уровнях организации живого.
  2. Развивающие: совершенствование надпредметных умений сравнивать и анализировать, устанавливать причинно-следственные связи; переводить информацию в графический вид (таблицу), постановки и решения проблем; оперировать понятиями и связывать с ранее полученными знаниями в курсах ботаники, зоологии, анатомии; рассуждать по аналогии, развивать память, произвольное внимание.
  3. Воспитательные: развивать интерес к окружающим явлениям, умение работать в парах и в коллективе, вести диалог, слушать товарищей, оценивать себя и других, формировать культуру речи.

Планируемые результаты: умение характеризовать функции вещества на основе строения и свойств; обобщение полученных знаний о функциях воды на разных уровнях организации живого в форме таблицы.

Тип урока: изучение нового материала и первичное закрепление знаний.

Методы обучения : беседа, рассказ учителя, показ иллюстраций, презентации, индивидуальная работа с текстом, контроль знаний.

Формы организации учебной деятельности : работа в парах (составление обобщающей таблицы), индивидуальная, фронтальная, эксперимент.

Оборудование: фотографии, компьютер, мультимедийный проектор, на столах учащихся раздаточный материал для урока, демонстрационные опыты.

Ход урока

Организационный момент (2 мин.): поздороваться, представиться детям.

Введение (5 мин.):

Вода – самое распространенное и удивительное на Земле вещество (например, расширяется при охлаждении, замерзает уже при 0 0 С, кипит при 100 0 С, выполняет множество функций и даже может хранить информацию). Ею заполнены океаны, моря, озера и реки; пары воды входят и в состав воздуха. Вода содержится в клетках всех живых организмов (животных, растений, грибов, бактерий) в значительных количествах: организме млекопитающих массовая доля воды составляет примерно 70%, а в огурцах и арбузах ее около 90%, в костях человека – 45 %, а в мозге до 90 %.

Цели урока: почему воды больше всего в составе живых организмов? Почему вода покрывает большую часть суши? Как вода сохраняет информацию? На эти вопросы нам с вами предстоит ответить в конце урока.

Как будем работать: беседуем, я рассказываю, показываю иллюстрации и схемы (Презентация), в процессе объяснения заполняем пропущенные слова в распечатках (Приложение 1). В конце урока я проконтролирую, как вы меня поняли. Мы заполним обобщающую таблицу, а я оценю ваши старания.

Демонстрационные опыты:

Опыт № 1:

Цель опыта: доказать растворимость веществ в воде.

Ход опыта: насыпать в колбу с водой соль или сахар. Размешать.

Результат: соль (сахар) полностью растворились.

Вывод: вода – хороший растворитель.

Опыт № 2

Цель опыта: доказать способность воды передвигаться по сосудам стебля за счет корневого давления и присасывающей силы испарения.

Ход опыта: поставить на сутки укоренившийся побег бальзамина в раствор чернил.

Результат: стебель и некоторые листья бальзамина окрасились в синий цвет.

Вывод: вода передвигается по сосудам стебля за счет сил сцепления между молекулами при помощи корневого давления и присасывающей силы испарения..

Опыт № 3:

Цель опыта: доказать способность воды двигаться в область меньшей концентрации растворителя.

Ход опыта: в две чашки Петри поместить одинаковые кусочки картофеля. В одну чашку налить воду, в другую – концентрированный раствор соли.

Результат: картофель в простой воде набух, а в концентрированном растворе соли сморщился.

Вывод: молекулы воды двигаются в область меньшей концентрации растворителя.

Объяснение нового материала (20 мин.):

Проводится в форме беседы. Изучаем вещества по определенному плану (пишу на доске): строение – свойства – функции на системных уровнях организации живого.

Строение молекулы и межмолекулярные связи

Свойства

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный примерно 105 0. Поэтому молекула воды – диполь: та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород – отрицательно.

Вода – хороший растворитель. Растворы образуются путем взаимодействия растворенного вещества с частицами растворителя. Процесс растворения твердых веществ в жидкостях можно представить так: под влиянием растворителя от поверхности твердого вещества постепенно отрываются отдельные ионы или молекулы и равномерно распределяются по всему объему растворителя.
Опыты № 1 и № 3

Вода – реагент в реакциях гидролиза (разрушение сложных химических веществ под действием воды до более простых с новыми свойствами) и ряде других реакций
ферменты
крахмал + вода → глюкоза

Водородные связи между молекулами воды

Растворы ряда веществ образуются за счет водородных связей между веществом и молекулами растворителя (сахара, газы)

Водородных связей много, поэтому необходимо много энергии для их разрыва.

Вода обладает хорошей теплопроводностью и большой теплоемкостью . Вода медленно нагревается и медленно остывает.

Водородные связи слабые

Молекулы воды подвижны относительно друг друга

Силы межмолекулярного сцепления образуют пространства между молекулами

Вода практически не сжимается

Образование водородных связей между молекулами воды и других веществ

Вода характеризуется оптимальным для биологических систем значением силы поверхностного натяжения , текучесть воды Опыт № 2

Вода замерзает при 0 0С, при замерзании образуется много водородных связей, возникают пространства между молекулами
Схема строения льда: пространства
между молекулами

Максимальная плотность воды при 4 С° равна 1 г/см3, лед имеет меньшую плотность, и всплывает на ее поверхность.


Функции на системных уровнях организации живого

Вода обеспечивает диффузию - пассивный транспорт веществ в клетку и из нее в область меньшей концентрации (осмос) и пиноцитоз , а также транспорт веществ из клетки.
Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно, и, следовательно, реакционная способность вещества возрастает. Образовавшиеся в результате распада веществ ионы быстро вступают в химические реакции, поэтому вода – основная среда всех биохимических процессов в организме (реакциях обмена веществ).

  1. Обеспечивает подготовительный этап окисления полимеров: гидролиз крахмала до глюкозы, белков до аминокислот.
  2. Вода – источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции углекислого газа.
  3. Эндогенная вода, образующаяся при окислении органических веществ.

Гидрофильные вещества проникают внутрь клетки.
Гидрофобные вещества (белки, липиды) могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Из гидрофобных веществ состоит клеточная мембрана, которая сохраняет целостность клетки, но избирательно пропускает вещества; жироподобными веществами из копчиковой железы птицы смазывают перья.
Растворяя газы, вода обеспечивает возможность дыхания и фотосинтеза организмов водных экосистем. А сероводород, образующийся при разложении остатков организмов, делает водоем безжизненным.

Вода – терморегулятор.
1) Вода обеспечивает равномерное распределение тепла по всему организму. При изменении температуры окружающей среды, внутри клетки температура оказывается неизменной или ее колебания оказываются значительно меньшими, чем в окружающей среде, поэтому вода обеспечивает сохранение структуры клетки (чем активнее клетка, тем больше в ней воды).
2) Охлаждение организма (потоиспарение, испарение воды растениями) происходит при участии воды.
3) Вода – благоприятная среда обитания для многих живых организмов (непосредственно водная и полости, заполненные водой, в почве).
4) Водные бассейны регулируют температуру на нашей планете. Большая теплоемкость определяет климатическую роль океанов. Поэтому морской климат мягче континентального, погода подвержена меньшим колебаниям температуры

«Смазочный материал» в суставах, плевральной полости и околосердечной сумке.

  1. Создается тургорное давление, которое определяет объем и упругость клеток и тканей.
  2. Гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.
  3. Околоплодный пузырь с жидкостью поддерживает и защищает плод млекопитающих.

Капиллярный кровоток, движение веществ в капиллярах почвы, восходящий и нисходящий ток растворов в растениях.
Поверхностное натяжение воды образует пленку – часть среды обитания некоторых животных (клоп-водомерка, личинки комаров).

Лед защищает водоемы от промерзания.
Обитатели водных экосистем остаются активными в зимний период.

Вода может хранить информацию (Приложение 2).

Закрепление (13 мин.):

Биологические задачи:

  1. Показать синюю или зеленую хризантему. Как создают такие растения? Являются ли они результатом селекционной работы?
  2. Почему кожа на пальцах при длительном купании сморщивается?
  3. Почему сморщивается яблоко, лежащее в тепле?

Разделить класс на три группы (по рядам). Первая группа выписывает в тетрадь функции воды на уровне живой клетки. Вторая группа – на уровне живого организма. Третья группа – на уровне экосистем и биосферы. В конце работы оценить себя по количеству найденных функций. Работа ведется по парам.

Функции воды

В живой клетке В живом организме В экосистемах и биосфере

1. Транспорт веществ в клетке.

1. Охлаждение организмов.

1. Дыхание и фотосинтез водных организмов.

2. Основная среда всех биохимических процессов.

2. «Смазочный материал» в суставе, плевральной полости, околосердечной сумке, глазном яблоке.

2. Регуляция температуры на планете.

3. Участвует в ряде химических реакций.

3. Гидростатический скелет.

3. Благоприятная среда обитания для живых организмов.

4. Сохранение структуры клетки.

4. Защита плода млекопитающих.

4. Защита водоемов от промерзания.

5. Тургорное давление.

5. Капиллярный кровоток, нисходящий и восходящий ток в растениях.

5. Часть среды обитания животных.

6. Подъем почвенных растворов по капиллярам почвы.

Подведение итогов урока, оценка работы (2 мин.)

Транспортная . Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

Метаболическая . Вода является средой для всех биохимических реакций в клетке. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов и источником атомов водорода. Она же является источником свободного кислорода.

Структурная . Цитоплазма клеток содержит от 60 до 95 % воды. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).

Вода участвует в образовании смазывающих жидкостей (синовиальная в суставах позвоночных; плевральная в плевральной полости, перикардиальная в околосердечной сумке) и слизей (которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли . Молекулы солей в водном растворе диссоциируют на катионы и анионы. Наибольшее значение имеют катионы: К + , Na + , Са 2+ , Mg 2+ и анионы: Cl - , H 2 PO 4 - , HPO 4 2- , HCO 3 - , NO 3 - , SO 4 2- . Существенным является не только содержание, но и соотношение ионов в клетке.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения. С разностью концентрации ионов по разные стороны мембраны связывают активный перенос веществ через мембрану, а также преобразование энергии.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую pH внутриклеточной среды организма на уровне 6,9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему, которая поддерживает рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.



Некоторые катионы и анионы могут включаться в комплексы с различными веществами (например, анионы фосфорной кислоты входят в состав фосфолипидов, АТФ, нуклеотидов и др.; ион Fe 2+ входит в состав гемоглобина и т.д.).

Главные загрязнители воды

Установлено, что более 400 видов веществ могут вызвать загрязнение воды. В случае превышения допустимой нормы хотя бы по одному из трех показателей вредности: санитарно-токсикологическому, общесанитарному или органолептическому, вода считается загрязненной.

Различают химические, биологические и физические загрязнители. Среди химических загрязнителей к наиболее распространенным относят нефть и нефтепродукты, СПАВ (синтетические поверхностно-активные вещества), пестициды, тяжелые металлы, диоксины и др. Очень опасно загрязняют воду биологические загрязнители: вирусы и другие болезнетворные микроорганизмы; и физические - радиоактивные вещества, тепло и др.

Процессы загрязнения поверхностных вод обусловлены различными факторами. К основным из них относятся:

· Сброс в водоемы неочищенных сточных вод.

· Смыв ядохимикатов ливневыми осадками.

· Газодымовые выбросы.

· Утечки нефти и нефтепродуктов.

Приоритетные загрязнители водных экосистем по отраслям промышленности:

Нефтегазодобыча, нефтепереработка: Нефтепродукты, СПАВ, фенолы, аммонийные соли, сульфиды. Лесная промышленность: Сульфаты, органические вещества, лигнины, смолистые и жирные вещества, азот.

Машиностроение, металлообработка, металлургия: Тяжелые металлы, взвешенные вещества, фториды, цианиды, аммонийный азот, нефтепродукты, фенолы, смолы.

Химическая промышленность: Фенолы, нефтепродукты, СПАВ, ароматические углеводороды, неорганика.

Горнодобывающая, угольная промышленность: Флотореагенты, неорганика, фенолы, взвешенные вещества.

Легкая, текстильная, пищевая промышленности: СПАВ, нефтепродукты, органические красители и др.

Кроме поверхностных вод постоянно загрязняются и подземные воды, в первую очередь в районах крупных промышленных центров. Загрязняющие вещества могут проникать к подземным водам различными путями: при просачивании промышленных и хозяйственно-бытовых стоков из хранилищ, прудов-накопителей, отстойников и др., по затрубному пространству неисправных скважин, через поглощающие скважины, карстовые воронки и др.

К естественным источникам загрязнения относят сильно минерализованные подземные воды или морские воды, которые могут внедряться в пресные незагрязненные воды при эксплуатации водозаборных сооружений и откачке воды из скважин.

Важно подчеркнуть, что загрязнения подземных вод не ограничиваются площадью промпредприятий, хранилищ отходов и т.д., а распространяются вниз по течению потока на расстояния до 20-30 км и более от источника загрязнения. Это создает реальную угрозу для питьевого водоснабжения.

очистка вода показатель качество.

Среди водоохранных проблем одной из важнейших является разработка и внедрение эффективных методов обеззараживания и очистки поверхностных вод, используемых для питьевого водоснабжения.

Наиболее распространенные примеси, ухудшающие качество питьевой воды:

Взвешенные вещества - нерастворимые в воде суспензии, эмульсии. Наличие в воде взвешенных веществ свидетельствует о её загрязненности частичками глины, песка, ила, водорослей и т.п.

Органические вещества природного происхождения - частички почвенного гумуса, продукты жизнедеятельности и разложения растительных и животных организмов.

Органические вещества техногенного происхождения - органические кислоты, белки, жиры, углеводы, хлорорганические соединения, фенолы, нефтепродукты.

Микроорганизмы - планктон, бактерии, вирусы.

Соли жесткости - кальциевые и магниевые соли угольной, серной, соляной и азотной кислот.

Соединения железа и марганца - органические комплексные соединения, сульфаты, хлориды и гидрокарбонаты.

Соединения азота - нитраты, нитриты, аммиак.

Растворимые в воде газы - сероводород, метан.

Влияние примесей на качество воды:

Повышенная мутность воды указывает её значительную загрязненность взвешенными веществами и препятствует использованию в хозяйственно - питьевых целях.

Органические вещества вызывают различного рода запахи (землистый, гнилостный, болотный, рыбный, аптечный, нефтяной и т.п.), повышают цветность, вспениваемость, оказывают неблагоприятное воздействие на организм человека.

Микроорганизмы увеличивают количество органики, могут вызвать заболевания тифом, дизентерией, холерой, полиомиелитом и т.д. бесцветная.

Соли жесткости в большом количестве делают воду непригодной для хозяйственных нужд. В жесткой воде увеличивается расход моющих средств при стирке, медленно развариваются мясо и овощи, выходят из строя посуда и водонагреватели. Железо и марганец придают воде неприятную красновато-коричневую или черную окраску, ухудшают её вкус, вызывают развитие железобактерий. Избыток железа в организме увеличивает риск инфарктов, длительное употребление железосодержащей воды вызывает заболевание печени, снижает репродуктивную функцию организма. Марганецсодержащие воды отличаются вяжущим привкусом, окраской, оказывают токсическое действие на организм.

Соединения азота - при использовании питьевой воды с нитратами в количестве свыше 45 мг/л в организме человека синтезируются нитрозамины, способствующие образованию злокачественных опухолей.

Наличие в воде сероводорода резко ухудшает её качество, придает неприятный запах, провоцирует развитие серобактерий.

Хозяйственно - питьевая вода должна быть безвредна для здоровья человека, иметь хорошие физические, химические и санитарные показатели.

Метод или совокупность методов очистки выбирают на основе изучения свойств исходной воды, её запасов в источнике, требуемое количество продукта, а также воспринимающую способность канализации для приема выделенных из воды загрязнений.

Методы очистки воды

В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно - бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.

Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения - сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода). Очистка сточных вод - вынужденное и дорогостоящее мероприятие, представляющее собой довольно сложную задачу, связанную с большим разнообразием загрязняющих веществ и появлением в их составе новых соединений.

Методы очистки вод можно разделить на 2 большие группы: деструктивные и регенеративные.

В основе деструктивных методов лежат процессы разрушения загрязняющих веществ. Образующиеся продукты распада удаляются из воды в виде газов, осадков или остаются в воде,. но уже в обезвреженном виде.

Регенеративные методы - это не только очистка сточных вод, но и утилизация ценных веществ, образующихся в отходах.

Методы очистки вод можно разделить на: механические, химические, гидрохимические, электрохимические, физико-химические и биологические. Когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примеси.

Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.

Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.

Гидромеханические методы применяют для извлечения из сточных вод нерастворимых грубодисперсных примесей органических и неорганических веществ путем отстаивания, процеживания, фильтрования, центрифугирования. С этой целью используют различные конструктивные модификации сит, решеток, песколовок, отстойников, центрифуг и гидроциклонов.

Электрохимические методы очистки сточных вод от различных растворимых и диспергированных примесей включают анодное окисление и катодное восстановление, электрокоагуляцию, электродиализ. Процессы, лежащие в основе этих методов, протекают при пропускании через сточную воду электрического тока. Под действием электрического поля положительно заряженные ионы мигрируют к катоду, а заряженные отрицательно - к аноду. В прикатодном пространстве происходят процессы восстановления, а в прианодном - процессы окисления.

Физико-химические методы очистки сточных вод многообразны. Это коагуляция, флотация, адсорбционная очистка, ионный обмен, экстракция, обратный осмос и ультрафикация. При физико-химическом методе обработки из сточных вод удаляются тонкодисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества.

Биохимические методы очистки сточных вод. Применяются для очистки хозяйственно-бытовых и промышленных сточных вод от органических и некоторых неорганических (сероводорода, сульфидов, аммиака, нитратов и др.) веществ. Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания, превращения их в воду, диоксид углерода, сульфат-фосфат-ион и др. и увеличивая свою биомассу.

Также к основным методам очистки воды относятся нижеперечисленные методы:

Осветление - удаление из воды взвешенных веществ. Реализуется фильтрацией воды через пористые фильтроэлементы (картриджи) или через слой фильтроматериала. Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляция - обработка воды специальными химическими реагентами для укрупнения частиц загрязнений. Делает возможными или интенсифицирует осветление, обесцвечивание, обезжелезивание. Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Окисление - обработка воды кислородом воздуха, гипохлоритом натрия, марганцевокислым калием или озоном. Обработка воды окислителем (или их комбинацией) делает возможными или интенсифицирует обесцвечивание, дезодорацию, обеззараживание, обезжелезивание, деманганацию.

Обесцвечивание - удаление или видоизменение веществ, придающих воде цвет. Реализуется различными методами, в зависимости от причины цветности. Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание - обработка воды окислителями и/или УФ-излучением для уничтожения микроорганизмов. Обеззараживание воды (удаление бактерий, спор, микробов и вирусов) является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания. Обычными методами при очистке воды являются:

  • Хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция.
  • Озонирование. При применении озона для подготовки питьевой воды используются окислительные и дезинфицирующие свойства озона.
  • Ультрафиолетовое облучение. Используется энергия ультрафиолетового излучения для уничтожения микробиологических загрязнений. Кишечная палочка, бацилла дизентерии, возбудители холеры и тифа, вирусы гепатита и гриппа, сальмонелла погибают при дозе облучения менее 10 мДж/см2, а ультрафиолетовые стерилизаторы обеспечивают дозу облучения не менее 30 мДж/см2.

Обезжелезивание/деманганация - превращение растворённых соединений железа и марганца, как правило, через специальные фильтро-материалы. Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей. К наиболее часто используемым методам можно отнести:

Аэрирование - окисление кислородом воздуха с последующим осаждением и фильтрацией. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3. Это традиционный метод, применяемый уже много десятилетий. Реакция окисления железа требует довольно длительного времени и больших резервуаров, поэтому этот способ используется только на крупных муниципальных системах.

Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в высокопроизводительных компактных системах. Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2). Железо в присутствии диоксида марганца быстро окисляется и оседает на поверхности гранул фильтрующей среды. Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители.

Умягчение - замена катионов кальция и магния в воде на эквивалентное количество катионов натрия или водорода. Реализуется фильтрованием воды через специальные ионообменные смолы. С жесткой водой сталкивался каждый, достаточно вспомнить о накипи в чайнике. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки. В ней хуже пенится стиральный порошок и мыло. Высокая жесткость воды делает её непригодной и для питания газовых и электрических паровых котлов и бойлеров. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - уже на 50%. Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что, в свою очередь, ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения. Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров - умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде жесткие соли заменяются на мягкие, которые не образуют твердых отложений.

Обессоливание - удаление из воды растворённых солей на ионообменных смолах или фильтрование воды через специальные плёнки (мембраны), пропускающие только молекулы воды.

Все большее значение в охране поверхностных вод от загрязнения и засорения приобретают агро- лесо- мелиорация и гидротехнические мероприятия. С их помощью можно предотвращать заиление и зарастание озер, водохранилищ и малых рек. Выполнение этих работ позволит уменьшить загрязненный поверхностный сток и будет способствовать чистоте водоемов.

По данным Всемирной организации здравоохранения (ВОЗ) ежегодно в мире из-за низкого качества воды умирает около 5 млн. человек. Инфекционная заболеваемость населения, связанная с водоснабжением, достигает 500 млн. случаев в год. Это дало основание назвать проблему водоснабжения доброкачественной водой в достаточном количестве проблемой номер один .

В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно несет большое количество различных элементов и соединений, состав и соотношение которых определяется условиями формирования воды, составом водоносных пород. Из грунта атмосферная вода поглощает углекислоту и становиться способной растворять по пути своего движения минеральные соли

Проходя через породы, вода приобретает свойства, характерные для них. Так, при прохождении через известковые породы, вода становится известковой, через доломитовые породы - магниевой. Проходя через каменную соль и гипс, вода насыщается сернокислыми и хлористыми солями и становится минеральной.

После постройки колодца, да и любого другого источника водоснабжения, необходимо провести исследования качества и состава воды для определения пригодности ее к использованию и потреблению. Надо помнить, что хозяйственно-питьевая вода относится к пищевым продуктам и ее показатели должны отвечать согласно Закону РФ "О санитарно-эпидемическом благополучии населения" от 19.04.91года, санитарным правилам СанПиН 4630-88 и требованию ГОСТа 2874-82 "Вода питьевая".

ПДК ДЛЯ ОЗНАКОМЛЕНИЯ (ТАБЛИЦЫ НЕ ЗАУЧИВАТЬ О_о)

ПДК основных неорганических веществ в питьевой воде в различ. странах (мг/дм 3).

Показатели ВОЗ USEPA США ЕС СанПиН Россия СанПиН Украина ГОСТ 2874-82
Алюминий (Al) 0,2 0,2 0,2 0,5 0,2 - 0,5 0,5
Азот аммонийный (NH 3) 1,5 - 0,5 - - -
Асбест (млн. волокон/л) - 7,0 - - - -
Барий (Ва) 0,7 2,0 0,1 0,1 0,1 -
Берилий (Ве) - 0,004 - 0,0002 - 0,0002
Бор (В) 0,3 - 1,0 0,5 - -
Ванадий (V) - - - 0,1 - -
Висмут (Bi) - - - 0,1 - -
Вольфрам (W) - - - 0,05 - -
Европий (Eu) - - - 0,3 - -
Железо (Fe) 0,3 0,3 0,2 0,3 0,3 0,3
Кадмий (Cd) 0,003 0,005 0,005 0,001 отсут. отсут.
Калий (К) - - 12,0 - - -
Кальций (Са) - - 100,0 - - -
Кобальт (Со) - - - 0,1 - -
Кремний (Si) - - - 0,1 - -
Литий (Li) - - - 10,0 - -
Магний (Mg) - - 50,0 0,03 - -
Марганец (Mn) 0,5 0,05 0,05 - 0,1 0,1
Медь (Cu) 1,0÷2,0 1,0÷1,3 2,0 0,1
Молибден (Мо) 0,07 - - 0,25 - 0,5
Мышьяк (As) 0,01 0,05 0,01 0,05 0,001 0,05
Натрий (Na) - - -
Никель (Ni) 0,02 - 0,02 0,1 0,1 -
Ниобий (Nb) - - - 0,01 - -
Нитраты (NO 3)
Нитриты (NO 2) 3,0 3,3 0,5 3,0 отсут. отсут.
Ртуть (Hg) 0,001 0,002 0,001 0,0005 отсут. отсут.
Рубидий (Rb) - - - 0,1 - -
Самарий (Sm) - - - 0,024 - -
Свинец (Pb) 0,01 0,015 0,01 0,03 0,01 0,01
Селен (Se) 0,01 0,05 0,01 0,01 0,01 0,001
Серебро (Ag) - 0,1 0,01 0,05 - 0,05
Сероводород (H 2 S) 0,05 - - 0,03 - -
Стронций (Sr) - - - 17,0 -
Сульфаты (SO 4 2-) 250÷500
Cурьма (Sb) 0,005 0,006 0,005 0,05 - -
Таллий (Ti) - 0,002 - 0,0001 - -
Теллур (Те) - - - 0,01 - -
Фосфор (Р), (РО 4) - - - 0,0001 - 3,5
Фториды (F) 1,5 2,0÷4,0 1,5 1,5 1,5 1,5
Хлор/в т.ч. свободный 0,5÷5,0 - - 0,3÷0,5/0,8÷1,2 0,3÷0,5/0,8÷1,2 -
Хлориды (Cl) 250÷350 -
Хром (Cr 3+) - 0,1 - 0,5 - -
Хром (Cr 6+) 0,05 - 0,05 0,05 отсут. -
Цианиды (СN) 0,07 0,02 0,05 0,035 отсут. -
Цинк (Zn) 3,01 5,0 5,0 5,0 -

* предел по органолептике и потребительским качествам воды.

** в пересчете на нитраты и нитриты соответственно.

Обязательные к соблюдению параметры, установленные основным стандартом США (National Primary Water Drinking Regulations).

Данный параметр установлен так называемым "вторичным стандартом" США (National Secondary Water Drinking Regulations), носящий рекомендательный характер.

питьевой воды ..." 98/93/EC от 1998 г.

Индикаторный параметр, согласно "Директивы по качеству питьевой воды ..." 98/93/EC. От 1998 г.

Обязательный для соблюдения параметр, согласно "Директивы по качеству питьевой воды ..." 80/778/EC от 1980 г.

Рекомендованный уровень согласно EC Drinking Water Directive 80/778/EC от 1980 г. (приводятся только для элементов, для которых не установлена предельно допустимая концентрация - MAC (Maximum Admissible Conentration)). Указаны максимальные значения, допустимые в точке пользования.

UO (Undetectable Organoleptically) - не должен обнаруживаться органолептически (на вкус и запах), согласно "Директивы по качеству питьевой воды ..." 80/778/EC от 1980 г.

ПДК обеззараживающих средств и продуктов обеззараживания (мкг/дм 3).

Показатели ВОЗ USEPA США ЕС СанПиН Россия СанПиН Украина ГОСТ 2874-82
ОБЕЗЗАРАЖИВАЮЩИЕ ВЕЩЕСТВА
Монохлорамин - - - - -
Ди- и трихлорамин - - - - - -
Хлор в том числе остаточный свободный и остаточный - - 300-500 800-1200 300-500 800-1200 -
Диоксид хлора - - - - - -
Иод - - - - - -
Озон остаточный - - - -
ПОБОЧНЫЕ ПРОДУКТЫ ОБЕЗЗАРАЖИВАНИЯ
Броматы - - - - -
Хлорат - - - - -
Хлорит - - - -
Полиакриламид - - - -
Активированная кремниевая кислота (по Si) - - - - -
Полифосфаты - - - -
Хлорфенолы - - - - - -
2-хлорфенол - - - - -
1,2,4-хлорфенол - - - - -
2,4,6-хлорфенол - * - -
Формальдегид - - - -
Монохлорамин - - - - - -
Тригалометаны - - -
Бромформ - - - -
Дибромхлорметан - - - -
Бромдихлорметан - - - - -
Хлороформ - - -
Хлорированные уксусные кислоты - - - - - -
Монохлоруксусная кислота - - - - -
Дихлоруксусная кислота - - - - -
Трихлоруксусная кислота - - - -
Трихлорацетальдегид (хлоргидраты) - - - -
Хлорацетон - - - - - -
Галогенированные ацетонитрилы - - - - - -
Дихлорацетонитрил - - - - -
Дибромацетонитрил - - - - -
Бромхлорацетонитрил - - - - -
Хлорциан - - - - -
Хлорпикрин - - - - - -

Прочерк означает, что данный параметр не нормируется

ВОЗ - Всемирная Организация Здравохранения, USEPA (US Environment Protection Agency) - Агенство по охране окружающей среды США, ЕС - Европейское Сообщество, СанПиН - Россия - Госкомсанэпидемнадзор России, СанПиН Украина - Министерство Здравохранения Украины.

Воде обладает уникальными химические и физические свойства. Взгляните на рисунок 6.1: молекула воды (Н2О) состоит из двух атомов водорода, соединенных с атомом кислорода ковалентными связями. На полюсах молекулы воды находятся

положительные и отрицательный заряды, то есть она полярная. Благодаря этому две соседние молекулы обычно взаимно притягиваются за счет сил электростатического взаимодействия между отрицательным зарядом атома кислорода одной молекулы и положительным зарядом атома водорода другой. При этом возникает водородная связь (рис. 6.2), в 15-20 раз слабее ковалентная. Когда вода находится в жидком состоянии, ее молекулы непрерывно движутся и водородные связи постоянно то разрываются, то возникают вновь.

Часть молекул воды формирует водную оболочку вокруг некоторых соединений (например, белков). Такую воду называют связанной, или структурированной (4-5% общего количества воды в организмах). Структурированная вода формирует водную оболочку вокруг определенных молекул, предотвращает их взаимодействия. Кроме того, вода участвует в поддержании структуры определенных молекул, например белков. Остальные 95-96% воды называется свободной: она не связана с другими соединениями.

Зависимости от температуры среды вода способна изменять агрегатное состояние. Снижения температуры вода из жидкого состояния может переходить в твердое, а за повышение - в газовать.

Образование кристаллов льда в клетках организмов разрушает клеточные структуры. Это приводит к гибели клеток и всего организма. Именно поэтому млекопитающих и человека невозможно заморозить, а затем - разморозить без потери способности восстанавливать процессы жизнедеятельности.

Под влиянием растворенных в ней веществ вода может менять свои свойства, в частности точки температур замерзания (плавления) и кипения, что имеет важное биологическое значение. Например, в клетках растений с наступлением зимы повышается концентрация растворов углеводов, членистоногих - глицерина, рыб - белков и т.д.. Это снижает температуру, при которой вода переходит в твердое состояние, что предотвращает промерзание. Представьте себе: среди насекомых известны льодовичникы (рис. 6.3), способны сохранять активность на снежном покрове (они живут и в Украине). Молекулам воды присуща способность к ионизации, когда они расщепляются на ионы водорода и гидроксила. Хотя ионизация химически чистой воды очень слабая (при температуре +25 ° С из 107 молекул только одна находится в ионизированном состоянии), она играет важную биологическую роль. От концентрации ионов водорода, которую оценивают по водородным показателем (рН - значение отрицательного десятичного логарифма концентрации ионов Н +), зависят структурные особенности и активность макромолекул и т.д.. Нейтральной реакции раствора соответствует рН 7,0. Если его значение ниже-реакция раствора кислая, выше - щелочная. В разных частях организма и даже одной клетки можно наблюдать разные значения водородного показателя. Это важно для осуществления процессов обмена веществ, поскольку одни ферменты активны в щелочной среде, другие - в кислой. Например, у инфузории-туфельки пищеварительные вакуоли периодически «путешествуют» по клетке, оказываясь то в кислой, то в щелочной среде. При этом последовательно активные то одни пищеварительные ферменты, то другие, способствует лучшему перевариванию питательных веществ. Вспомните: у человека и млекопитающих ферменты желудочного сока активны в кислой среде, а поджелудочного - в щелочной.

Водные растворы, способные противостоять изменению их показателя рН при добавлении определенного количества кислоты или щелочи, называют буферными системами. Они состоят из слабой кислоты (донора Н +) и основы (акцептора Н +), способных соответствии связывать ионы гидроксила (ОН-) и водорода (Н +), благодаря чему рН внутри клетки почти не изменяется.

Вода определяет физические свойства клеток - объем и внутриклеточное давление (тургор). По сравнению с другими жидкостями в нее относительно высокие температуры кипения и плавления, что обусловлено водородными связями между молекулами воды.

Вода - значительно лучше растворитель, чем большинство других известных жидкостей. Поэтому все вещества подразделяют на хорошо растворимые в воде (гидрофильные) и нерастворимые (гидрофобные).

К гидрофильных соединений предстоит много кристаллических солей, например поваренная соль (NaCl), глюкоза, фруктоза, тростниковый сахар и т.д.. Гидрофильные соединения содержат полярные (частично заряженные) группы, способные взаимодействовать с молекулами воды или ионизуватися (образовывать заряженные ионы из нейтральных частей своей молекулы). Это, например, аминокислоты, содержащие карбоксильные (-СООН) и аминные (-NH2) группы.

Гидрофобные вещества (почти все липиды, некоторые белки) содержат неполярные группы, которые не взаимодействуют с молекулами воды. Они растворяются преимущественно в неполярных органических растворителях (хлороформ, бензол).

Существуют и амфифильных вещества, например фосфолипиды (соединения липидов с остатками ортофосфатнои кислоты), липопротеиды (соединения липидов с белками), много белков. Одна часть молекулы этих соединений проявляет гидрофильные свойства, другая - гидрофобные.

Когда определенная соединение переходит в раствор, ее молекулы приобретают способность к движению и их реакционная способность возрастает. Именно поэтому большая часть биохимических реакций происходит в водных растворах.

Вода как универсальный растворитель играет важную роль в обмене веществ. Проникновение веществ в клетку и выведение из нее продуктов жизнедеятельности возможно в основном лишь в растворенном состоянии.

Вода как универсальный растворитель играет чрезвычайно важную роль в транспорте различных соединений в живых организмах. Растворы органических и неорганических веществ растения транспортируют по ведущим тканях или межклетниках. У животных такую функцию выполняют кровь, лимфа, тканевая жидкость и т.д..

Вода участвует в сложных биохимических превращениях. Например, при участии воды происходят реакции гидролиза - расщепления органических соединений с присоединением к местам разрывов ионов Н + и ОН-.

С водой связана способность организмов регулировать свой тепловой режим. Ей свойственна высокая теплоемкость, которая предопределяет способность поглощать тепло при незначительных изменений собственной температуры. Теплоемкость - количество тепла, необходимого для нагревания тела или среды на 1 ° С. Благодаря этому вода предотвращает резким изменениям температуры в клетках и организме в целом при резких ее колебаний в окружающей среде. Поскольку на испарение воды расходуется много теплоты, организмы таким образом защищают себя от перегрева (например, транспирация у растений, потоотделение у млекопитающих, испарения влаги со слизистых оболочек животных).

Благодаря высокой теплопроводности вода обеспечивает равномерное распределение тепла между тканями и органами организма. Например, благодаря циркуляции жидкостей внутренней среды у животных или движения растворов по телу растения.

Водные растворы определенных соединений служат маслом, защищает поверхности постоянно подвергаются трению. Например, жидкость, которая заполняет полость суставов, облегчает скольжение суставных поверхностей, уменьшая трение между ними. Она также питает хрящ, покрывающий суставные поверхности костей.

Каждому виду организмов присущ водный баланс - определенное соотношение между поступлением воды и ее расходованием. Если расходы воды превышают ее поступления в организм, наблюдают водный дефицит отрицательно влияет на различные процессы жизнедеятельности (у растений - фотосинтеза, транспирации, у растений и животных - терморегуляции, протекания биохимических процессов и т.п.). Поэтому поддержание водного баланса - одно из условий нормального функционирования любого организма.

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды , их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой - отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы - положительный.

В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются, молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.

Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ - очень маленький положительный заряд; 6~ - очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

Биологическое значение воды

Вода как растворитель .Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, содержащие заряженные частицы (ионы), и некоторые неионные соединения, например сахара, в молекуле которых присутствуют полярные (слабо заряженные) группы (у Сахаров это несущая небольшой отрицательный заряд гидроксильная группа, -ОН). Когда вещество растворяется в воде, молекулы воды окружают ионы и полярные группы, отделяя ионы или молекулы друг от друга.

В растворе молекулы или ионы получают возможность двигаться более свободно, так что реакционная способность вещества возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах . Неполярные вещества, например липиды, отталкиваются водой и в ее присутствии обычно притягиваются друг к другу, иными словами, неполярные вещества гидрофобны (гидрофобный - водоотталкивающий). Подобные гидрофобные взаимодействия играют важную роль в формировании мембран, а также в определении трехмерной структуры многих белковых молекул, нуклеиновых кислот и других клеточных компонентов.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различныхвеществ . Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.