Нанотехнологии для медицины. Наноматериалы в медицине

наночастицы, многофункциональные (в медицине) иначе наносомы; динамические наноплатформы (англ. ) — и их комплексы, способные выполнять несколько медицинских задач, например, служить диагностическим контрастным агентом, для направленной , оказывать терапевтическое воздействие.

Описание

Разработаны многофункциональные, или так называемые динамические наноплатформы (наносомы), и текто- , состоящие из соединяемых друг с другом наномодулей, каждый из которых выполняет определенную функцию. Одни наночастицы могут нести лекарственные вещества, другие - молекулы узнавания и адресной доставки, третьи наноструктуры в составе наносомы могут выполнять роль биосенсоров (pH, редокс-потенциала, мембранного потенциала и др.), четвертые могут быть оснащены наноантеннами из нанокристаллов золота, вызывающими нагревание наносомы при помещении в электромагнитное поле определенной частоты. Применение наночастиц в составе наносом позволяет визуализировать их местонахождение в организме с помощью методов. На основе флуоресцентных технологий созданы наномодули, способные сигнализировать о процессах гибели опухолевых клеток и других результатах наномедицинских воздействий. В зависимости от решаемых врачом задач, наносомы могут собираться из различных функциональных модулей и осуществлять определенные виды деятельности в организме, такие, как мониторинг внутренней среды, нахождение и визуализация целевых клеток, доставка лекарств и их контролируемое высвобождение, сообщение о результатах терапии. Вариантами немодульных многофункциональных наночастиц являются модифицированные вирусные , при сборке которых возможно изменять как состав содержимого капсида (груз), так и состав молекул капсида, определяющих направленную доставку и сенсорные функции. Наносомы и другие упомянутые многофункциональные наноустройства можно рассматривать как отдаленный прообраз медицинского назначения.

На рис. приведена общая схематическая полимерная модель многофункциональной наночастицы медицинского назначения. Солюбилюзирующий блок (это может быть и сама по себе полимерная цепь) обеспечивает функционирование наночастицы в биологической среде (крови, лимфе и т. п.). При этом гидрофильность/гидрофобность, электростатический заряд, его плотность влияют на фармакокинетику и фармакодинамику препарата. Полимерные цепи могут весьма различаться по стабильности, размерам, составу, присутствию специальных доменов (например, гидрофобных вставок). Интервал значений молекулярной массы полимеров важен для проницаемости препарата (преодоление гематоэнцефалического барьера, стимуляция ). Лекарственный агент (фармакон) может быть связан с полимерной основой (или заключен напрямую в наноконтейнер) через биоразрушаемую или стабильную связь, сам же фармакон связывается в форме либо неактивного предшественника лекарства, либо как активный метаболит (активное начало лекарственного препарата). «Нацеливающее устройство» действует в качестве вектора (возможно, это молекулы , молекулярные компоненты, появляющиеся в зоне поражения, домены со специфическими сорбционными/связывающими свойствами и т. п.), направляющего наночастицу к определенному участку ткани или органу-«мишени». Приобретаемая конъюгатом в биосистеме конформация способствует формированию на его основе многофункциональной наночастицы медицинского назначения.

УДК 621.372.061

НАНОТЕХНОЛОГИИ В МЕДИЦИНЕ

Силаков К.И., студент; Силакова Т.Т., к.ф.-м.н., доцент

Национальный технический университет Украины «Киевский политехнический институт», г.Киев, Украина

Введение

Прежде чем говорить о возможных рисках и перспективах нанотехнологий в медицине, надо сказать, что же это такое? Для этого понятия не существует исчерпывающего определения. «Нанотехнологии» - это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, в сотни раз меньше длины волны видимого света и сопоставимая с размерами атомов. Развитие нанотехнологии ведется в 3-х направлениях:

Изготовление электронных схем размером с молекулу (атом);

Разработка и изготовление машин;

Манипуляция атомами и молекулами.

Что такое наномедицина? «Наномедицина» - это слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя разработанные нанороботы и наноструктуры (Р. Фрейтас) .

В настоящее время наномедицины не существует, есть лишь проекты, воплощение которых и приведет к наномедицине. Через несколько лет, когда будет создан первый наноробот, знания, накопленные наномедициной, воплотятся в жизнь. Тогда за считанные минуты вы избавитесь от вируса гриппа или от раннего атеросклероза. Нанороботы смогут вернуть даже очень старого человека в то состояние, в котором он был в молодости. От операции на органах перейдут к операции на молекулах и мы, таким образом, станем «бессмертны» .

Наномедицина. Перспективы развития и возможные риски

Ученые утверждают, что настанет тот день, когда с помощью нанотехнологий в кровяные клетки человека можно будет встраивать микроскопические датчики, предупреждающие о появление признаков радиационного излучения или развития болезни. Прогнозируемый срок реализации - 1-ая половина XXI века, а пока журналисты и общественность спорят: могут ли наносенсоры повлиять губительно на организм человека? Ведь неизвестно, как отреагирует организм на введенные в него чужеродные тела? Как выразился Э. Дрекслер: «невидимое оружие всемирного переворота, покрывающие землю «серая слизь» (graygoo)» - крохотная причина конца света.

212 Вісник Національного технічного університету України "КПІ"

Действительно ли, нанотехнологии могут стать причиной конца света или это всего лишь богатая фантазия некоторых ученых? Упорядоченные одним образом, атомы составляют дома и свежий воздух; упорядоченные другим, они образуют золу и дым. Уголь и алмазы, рак и здоровая ткань: вариации в упорядочении атомов различили дешевое от драгоценного, больное от здорового.

Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологи ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции. В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нанороботов (наноботов). Любую химически стабильную структуру, которую можно описать, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другогонанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью .

В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

В действительности наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, и позволит отменить старение. Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными. Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями .

Наноботы или молекулярные роботы могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки, в изменении генов или добавлении новых для усовершенствования функций клетки. Важным моментом является то, что такие трансформации в перспективе, можно производить над клетками живого, уже существующего организма, меняя геном отдельных клеток, любым образом трансформировать сам организм! .

Описание нанотехнологии может показаться притянутым за уши, воз-

Вісник Національного технічного університету України "КПІ" 213

Серія - Радіотехніка. Радіоапаратобудування.-2012.-№49

можно потому, что ее возможности столь безграничны, но специалисты в области нанотехнологии отмечают, что на сегодняшний день не было опубликовано ни одной статьи с критикой технических аргументов Дрекслера. Никому не удалось найти ошибку в его расчетах. Между тем, инвестиции в этой области (уже составляющие миллиарды долларов) быстро растут, а некоторые простые методы молекулярного производства уже вовсю приме-няются.Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. В рамках этой статьи мы рассматриваем лишь перспективность этих технологий для отмены старения людей. Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой. Для достижения этих целей необходимо решить три основных задачи:

1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.

2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.

3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Основная сложность - создание первого нанобота. Существует несколько многообещающих направлений. Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомно-силового микроскопа и достижении позиционной точности и силы захвата. Другой путь к созданию первого нанобота - химический синтез. Можно спроектировать и синтезировать химические компоненты, которые будут способны к самосборке в растворе. Еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными наноботами, и их можно использовать для создания более универсальных роботов .

Г руппа нанотехнологов из института предвидения заявила, что стремительный рост нанотехнологий выходит из-под контроля, но в отличие от Билла Джойа, вместо простого запрета на развитие исследований в этой области, они предложили установить правительственный контроль над исследованиями. Такой надзор может предотвратить случайную катастрофу, например, когда наноботы создают сами себя (до бесконечности), потребляя в качестве строительного материала все на своем пути, включая заводы, домашних животных и людей.

Рей Курцвейл утверждает, что к 2020 году появится возможность поместить внутри кровеносной системы миллиарды нанороботов размером с клетку. По оценкам Роберта Фрайтаса, ведущего ученого в области наномедицины, это случится не ранее, чем в 2030-2035 году. Эти наноботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами. Так они практически сольются с нами.

Ученые из штата Мичиган утверждают, что с помощью нанотехнологий можно будет встраивать микроскопические датчики в кровяные клетки человека, которые будут предупреждать о признаках радиации или развития болезни. В США, по предложению NASA, ведется разработка таких наносенсоров. ДжеймБейнер представляет себе «наноборьбу» с космическими излучениями так: перед стартом астронавт, используя шприц для подкожных инъекций, вводит в кроветок прозрачную жидкость, насыщенную миллионами наночастиц, на время полета он вставляет себе в ухо маленькое устройство (наподобие слухового аппарата). В течение полета это устройство будет использовать маленький лазер для поиска светящихся клеток. Это возможно, т.к. клетки проходят по капиллярам барабанной перепонки. По беспроводной связи информация клеток будет передаваться на главный компьютер космического корабля, а затем обрабатывается. В случае чего будут приниматься необходимые меры.

Все это может воплотиться в реальность примерно через 5-10 лет. А наночастицы ученые используют уже более 5 лет. Сейчас, сенсоры тоньше человеческого волоса могут оказаться в 1000 раз чувствительнее стандартных анализов ДНК. Американские ученые, разработавшие эти наносенсоры, полагают, что врачи смогут проводить целый спектр различных анализов, пользуясь лишь одной каплей крови. Одним из преимуществ этой системы является возможность моментально пересылать результаты анализа на карманный компьютер. Исследователи полагают, что на разработку полностью функциональной модели наносенсора, которым смогут воспользоваться врачи в повседневной работе, понадобиться около пяти лет. С помощью нанотехнологий медицина сможет не только бороться с любой болезнью, но и предотвращать ее появление, сможет помогать адаптации человека в космосе .

Могут ли влиять «устаревшиенанороботы» на человека? Когда механизм завершит свою работу, нанодоктора должны будут удалять нанороботов из организма человека. Поэтому опасность того, что «устаревшие нанороботы», оставшиеся в теле человека будут работать неверно, очень мала. Нанороботы должны будут спроектированы так, чтобы избежать сбоев в работе и уменьшить медицинский риск. А как нанороботы будут удалены из тела? Некоторые из них будут способны к самоудалению из организма человека путем естественных каналов. Другие же будут спроектированы таким образом, чтобы их могли удалить медики. Процесс удаления будет зависеть от устройства данного наноробота.

Что может быть сделано неправильно в течение лечения нанороботами человека? Считается, что первостепенной опасностью для пациента будет некомпетентность лечащего врача. Но ведь ошибки могут происходить и в неожиданных случаях. Одним из непредвиденных случаев может быть взаимодействие между роботами при их столкновении. Такие неисправно-

Вісник Національного технічного університету України "КПІ" 215

Серія - Радіотехніка. Радіоапаратобудування.-2012.-№49

сти трудно будет определить. Иллюстрацией такого случая может служить работа двух видов нанороботов А и В в организме человека. Если наноробот А будет удалять последствия работы робота В, то это приведет к повторной работе А, и этот процесс будет продолжаться до бесконечности, то есть нанороботы будут исправлять работу друг друга. Чтобы таких ситуаций не позникало, лечащий врач должен постоянно следить за работой нанороботов и в случае чего, перепрограммировать их. Квалификация врача является важным фактором .

Как будет реагировать организм человека на нанороботы? Как известно, наша иммунная система реагирует на чужеродные тела. Поэтому размер наноробота играет важную роль, так же как шероховатость поверхности и подвижность устройства. Утверждается, что проблема биосовместимости не очень сложна. Выходом из этой проблемы будет создание роботов на основе алмазоидных материалов. Благодаря сильной поверхностной энергии и сильной ее гладкости, внешняя оболочка роботов будет химически инертной .

Уже сейчас нанотехнологии применяются в медицине. Основными областями ее применения являются: технологии диагностики, лекарственные аппараты, протезирование и имплантанты. Ярким примером является открытие профессора Азиза. Людям, страдающим болезнью Паркинсона, через два крошечных отверстия в черепе внедряют в мозг электроды, которые подключены к стимулятору. Примерно через неделю больному вживляют и сам стимулятор в брюшную полость. Регулировать напряжение пациент может сам с помощью переключателя. С болью удается справиться уже в 80 % случаях. У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей. Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано.

Еще одним революционным открытием является биочип - небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. Преимуществобиочипов - большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.

Перспективы развития нанотехнологий очень велики. Применяемые в настоящее время нанотехнологии безвредны. Примером являются наночи-пыи солнцезащитная косметика на основе нанокристаллов . А такие

Вісник Національного технічного університету України "КПІ" Серія - Радіотехніка. Радіоапаратобудування.-2012.-№49

технологии, как нанороботы и наносенсоры, пока еще находятся в процессе разработки. Разговоры о том, что из-за бесконечного процесса самовос-производствананороботов толстый слой «серой слизи» может покрыть всю Землю, являются пока лишь теорией, не подтвержденной никакими данными. Нанотехнологии являются той областью науки, которая подвергается жесточайшей критике, прежде чем вводит какие-либо новшества. Ученые NASA говорят, что они успешно проводили испытания нанороботов на животных. Но стоит ли этому верить? Каждый решает это сам для себя. Использование, например, такихнанотехнологий, как наносенсоры, может иметь рискованный характер. Ведь любая, даже самая простейшая система может давать сбои, что уж говорить о таких передовых технологиях, как нанороботы? И, кроме того, надо учитывать индивидуальные физиологические особенности каждого человека.

Итак, перспективы развития нанотехнологий велики. В ближайшем будущем с их помощью можно будет не только побороть любую физическую болезнь, но и предотвратить ее появление. Но вот о рисках ученые ничего не говорят. Есть только бесчисленные статьи в желтой прессе о том, что люди под воздействием нанороботов станут неуправляемыми, как зомби. Так что общественности надо больше уделять внимания этому вопросу: чтобы ученые не только рассматривали «обе стороны монеты», но и ставили общество в известность об этом.

Литература

1. Игами М., Оказаки Т. Современное состояние сферы нанотехнологий: анализ патентов // Форсайт. - 2008.- № 3 (7). -с. 32-43.

2. Robert A. Freitas Jr. Current Status of Nanomedicine and Medical Nanorobotics// Journal of Computational and Theoretical Nanoscience.-2005.- V. 2.- P.1-25.

3. Roco M.C. National nanotechnology initiative: Past, present and future // Handbook on nanoscience, engineering and technology. Ed. Goddard, W.A et al. CRC, Taylor and Francis, Boca Raton and London.-2007.- P.3.1-3.26.

4. Robert A. Freitas Jr. // Nanomedicine, Basic Capabilities. LandesBioscience, Austin.- 1999.- V. 1. P.7-20.

5. K. Eric Drexler. Nanosystems: Molecular Machinery, Manufacturing and Computation.//John Wiley and Sons, NY, 1992.

6. K. Eric Drexler. // Engines of Creation: The Coming Era of Nanotechnology.- 1986.- V. 2.- P.17-25.

7. Lipsey R., Carlaw K., Bekar C. Economic Transformations: General Purpose Technologies and Long-Term Economic Growth. // Oxford University Press.-2005.- P. 87, 110, 131, 212-218.

8. Хульман А. Экономическое развитие нанотехнологий: обзор индикаторов // Форсайт. - 2009.- № 1. - с. 31-32.

9. Youtie J., lacopetta M., Graham S. Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology? // Journal of Technology Transfer.- 2008. - V. 33. - P. 315-329.

10. Ратнер М. / М. Ратнер, Д.Ратнер. Нанотехнология: простое объяснение очередной гениальной идеи. // Пер. с англ. / М.: Вильямс. - 2004. - С. 20-22.

11. Kearnes M. Chaos and Control: Nanotechnology and the Politics of Emergence //

Вісник Національного технічного університету України "КПІ" 217

Серія - Радіотехніка. Радіоапаратобудування.-2012.-№49

Paragraph. - 2006. - № 29. - P. 57-80.

12. Игами М. Библиометрические индикаторы: исследования в области нанонауки // Форсайт. - 2008. - № 2. - с. 36-45.

13. Miyazaki K., Islam N. Nanotechnology systems of innovation. An analysis of industry and academiaresearch activities // Technovation. - 2007. - № 27. - P. 661-675.

14. Артюхов И.В., Кеменов В.Н., Нестеров С.Б.// Биомедицинские технологии. Обзор состояния и направления работы. Материалы 9-й научно-технической конференции "Вакуумная наука и техника"-М.: МИЭМ.-2002, с. 244-247

15. Артюхов И.В., Кеменов В.Н., Нестеров С.Б.//Нанотехнологии, биология и медицина. Материалы 9-й НТК "Вакуумная наука и техника"-М.: МИЭМ, 2002, с.248-253.

16. Магия микрочипов. // В мире науки. - 2002. - № 11. - с. 6-15.

Силаков К.И., Силакова Т.Т. Нанотехнологии в медицине. Представлен краткий обзор литературы в области нанотехнологий в медицине. Отмечается, что в настоящее время есть только проекты, воплощение которых в реальность и приведет к наномедицине. Ученые утверждают, что настанет тот день, когда с помощью нанотехнологий в кровяные клетки человека можно будет встраивать микроскопические датчики, предупреждающие о появление признаков радиационного излучения или развития болезни. Ожидается также создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток. Прогнозируемый срок реализации - середина XXI века.

Ключевые слова:нанотехнологии, наноэлектроника, наноматериалы, нанобиотехнологии, наномедицина, нанодиагностика, нанороботы

Сілаков К.І., Сілакова Т.Т. Нанотехнології в медицині.Представлений короткий огляд літератури в області нанотехнологій в медицині. Відзначається, що в даний час є тільки проекти, втілення яких в реальність і призведе д наномедицини. Вчені стверджують, що настане той день, коли за допомогою нанотехнологій в кров"яні клітини людини можна буде вбудовувати мікроскопічні датчики, що попереджають про появу ознак радіаційного випромінювання або розвитку хвороби. Очікується також створення молекулярнихроботів-лікарів, які можуть "жити" всередині людського організму, усуваючи всі виникаючі ушкодження, або запобігаючи виникненню таких. Маніпулюючи окремими атомами і молекулами, наноботи зможуть здійснювати ремонт клітин. Прогнозований термін реалізації - середина XXI століття.

Ключві слова: нанотехнології, наноелектроніка,наноматеріали, нанобіотехноло-гії, наномедицина, нанодіагностіка, нанороботи.

Silakov K.I., Silakova T.T. Nanotechnologies of medicine. The brief review of literature is presented in area of nanotekhnologiy in medicine. It is marked that presently nanomediciny while does not exist, there are only projects embodiment of which in reality and will result in nanomedicine. Scientists assert that will come that day, when by nanotekhnologiy in the bloody cages of man it is possible it will be to build microscopic sensors, warnings at appearance of signs of radiation radiation or development of illness. Creation of molecular ro-bots-doctors which can "live " into a human organism is expected also, removing all nascent damages, or preventing an origin such. Manipulating separate atoms and molecules, nano-boty will be able to carry out repair of cages. The forecast term of realization is a middle of XXI age.

Key words:nanotechnology,nanoelectronics,nanomaterial,nanobiotechnology,nanomedi cine,nanodiahnostika,nanorobots.

218 Вісник Національного технічного університету України "КПІ"

Серія - Радіотехніка. Радіоапаратобудування.-2012.-№49

Медицина - очень консервативная область. Ведется огромное количество исследований по всему миру в области медицины, но требуется очень много времени, чтобы они были внедрены в жизнь. В среднем, между созданием нового лекарства и началом его применения в практической медицине проходит около 5 - 10 лет. Поэтому лекарства на основе нанотехнологий и существуют пока только в виде экспериментальных образцов или перспективных проектов. Тем не менее, возможности нано теха в медицине колоссальны.

Нанотехнологии работают с частицами в пределах до 100 нм - с размерами в несколько раз только больше биологических макромолекул, таких как белки или нуклеиновые кислоты. При этом нанообъекты могут быть изготовлены из совершенно разных материалов - будь то золото, молекулы углерода или же белковые макромолекулы.

Соответственно, используемый материал и технологии получения будут определять свойства наночастиц. Это позволяет добиться практически любых характеристик, которые можно использовать тем или иным образом во многих областях медицины - от зашивания операционных надрезов до диагностики инфекционных заболеваний и лечения опухолей.

Одним из наиболее привлекательных вариантов применения нано - это создание сенсоров - устройств, способных реагировать на изменения среды, появление частиц какого-то определенного вещества, изменение концентрации веществ. В настоящий момент существует множество проектов по созданию сверхчувствительных сенсоров, работающих за счет наночастиц.

Наночастицы соотносятся с молекулами примерно как ваша рука с бусиной или с мячиком для пинг-понга, поэтому наночастицы можно использовать, чтобы "ловить" отдельные молекулы. Это объясняет особую чувствительность нано-сенсоров, способность их обнаруживать вещества даже в малейших концентрациях. Особенно ценно это качество для диагностики заболеваний, что уже нашло применение в перспективных разработках.

Тем не менее, нанотехнологии уже нашли применение в борьбе со злокачественными опухолями. Существует нехирургический метод удаления опухолей, основанный на гипертермии. Принцип его состоит в том, что углеродные нанотрубки, вводимые в опухоль, проникают в её клетки и, под воздействием излучения определенной частоты, начинают выделять теплоту, повышать температуру опухоли, вызывая, таким образом, её отмирание. При этом, весьма незначительна вероятность того, что останутся живые злокачественные клетки и что опухоль начнет расти снова.

На похожем принципе работает техника, разработанная доктором Еленой Рожковой из Argonne"s NanoBio Interfaces group, частицы с диоксидом титана, прикрепленные к антителам, способным обнаруживать клетки мультиформной глиобластомы и соединяться с ними. Под воздействием света титан создает электрический заряд, который передается на молекулу кислорода, которая переходит в активную форму, начинает разрушать клеточную мембрану и запускает механизм апоптоза. Тем не менее, эти техники требуют хирургического вмешательства для доставки источника света к опухоли.

Лаборатория в израильском институте Технион в Хайфе создала прибор, способный по содержанию в выдохе пациента определенных молекул определить наличие рака легких. В качестве чувствительной части прибора используются девять наносенсоров. Они представляют собой золотые наночастицы, на которых закреплены органические соединения, реагирующие на конкретные молекулы, находящиеся в воздухе, который выдохнул пациент. Через 30 секунд уже готов ответ, при этом не требуется делать болезненных и сложных операций (таких как биопсия), без которых невозможна современная диагностика. Тот же коллектив ученых, возглавляемый доктором Хоссеном Хаиком, разрабатывают аналогичный прибор для обнаружения рака почек.

Ученые из университета Халла совершили очередной шаг в борьбе с раковыми заболеваниями, разработав более эффективный принцип доставки в ткани опухоли наночастиц, которые несут на себе особые вещества - фотосенсибилизаторы. После этого остается лишь облучить ткань светом, производимым лазером и злокачественная ткань начнет погибать.

Фотодинамическая терапия представляет собой метод лечения онкологических, опухолевых заболеваний, некоторых заболеваний кожи или инфекционных заболеваний, основанный на применении светочувствительных веществ - фотосенсибилизаторов и видимого света определённой длины волны. Сенсибилизатор вводится в организм, чаще всего внутривенно, и накапливается в тканях опухоли. Затем поражённые патологическим процессом ткани облучают светом с длиной волны. Поглощение молекулами фотосенсибилизатора квантов света в присутствии кислорода приводит к фотохимической реакции, в результате которой образуется так называемый синглетный кислород, вызывающий некроз клеток опухоли.

Как объясняет руководитель проекта Росс Бойл, пока опухоль невелика, ее клетки получают питание и кислород за счет диффузии, однако по мере роста ткани возникает необходимость в кровоснабжении. Стенки новообразованных сосудов не такие прочные, как у здоровых, поэтому мы смогли создать наночастицы такой конфигурации, которая позволяет им проникать через стенки новообразованных сосудов и накапливаться в тканях опухоли". Пока наночастицы находятся в потоке крови, они цепко удерживают молекулы фотосенсибилизаторов, но под воздействием света, находясь в тканях опухоли, они легко высвобождают их.

В настоящее время ученые провели практические испытания на опухоли толстой кишки и выяснили, что использование наночастиц действительно существенно повышает эффективность фотодинамической терапии.

Корейские же учёные разработали кремниевый наноматериал, который нагревается под воздействием инфракрасного излучения и уничтожает раковые клетки в организме. Последние исследования в области фотодинамической терапии были сосредоточены на использовании одностенных углеродных нанотрубок. Под воздействием ближнего инфракрасного излучения нанотрубки нагреваются, в результате чего происходит гибель раковых клеток. Chongmu Lee и его коллеги из Inha University (Корея) заменили углеродные нанотрубки пористым кремниевым наноматериалом. Исследователи считают, что новый материал будет давать такую же высокую температуру, как углеродные нанотрубки, но, кроме того, генерировать значительно меньшее количество активных форм кислорода (reactive oxygen species, ROS). Lee надеется, что их разработка сможет использоваться для лечения рака, но признает, что для этого ещё многое предстоит сделать. "Хотя предварительные результаты в этой работе показывают выполнимость пористого кремния как новый терапевтический агент, очевидно, что необходимо провести много исследований прежде, чем терапия рака, основанная на пористом кремнии, станет реальностью", - говорит он.

Близко к этой разработке стоит и следующая теория, предполагающая использование золотых наночастициц. Свойства данных наночастиц - шариков или прутков - очень интересны. С одной стороны, ученые умеют с ними работать и пришивать их к всевозможным биомолекулам, в частности, антителам. С другой стороны, эти частицы отлично нагреваются инфракрасным светом подходящей частоты: в этом повинен так называемый плазменный резонанс. При взаимодействии со светом возбуждаются специфические, плазменные, колебания электронов, которые способны нагревать частицу. Частота плазменных колебаний связана с размером наночастицы и именно у золотых прутков она оказывается в том интервале, который сможет возбуждаться инфракрасным светом. Сам же свет этих длин волн достаточно свободно проходит сквозь тело человека. Воспользоваться этими свойствами золотых наночастиц решили ученые из Университета Твенте (Нидерланды). Разрабатываемый метод должен помочь в идентификации раковых клеток на ранних этапах заболевания. Дело в том, что рентгеном или магнитным резонансом трудно выявить небольшие опухоли. Совсем по-другому, получается, если ввести в организм препарат, который состоит из золотых наночастиц с приделанными к ним антителами к раковым клеткам. Эти антитела прочно прикрепят частицу к мишени. Под импульсами инфракрасного луча лазера наночастицы нагреваются, расширяются, чем увеличивают давление на окружающие ткани. Этот процесс сопровождается появлением ультразвука, который можно легко зафиксировать. Во втором разрабатываемом методе ученые хотят нагревать наночастицу до высокой температуры, выше 100 градусов. Этим можно воспользоваться в двух случаях. Во-первых, для того, чтобы уничтожить клетку таким нагревом. А во-вторых, нагрев может открыть капсулу с антираковым препаратом. Причем сделать это точно в том месте, где расположена опухоль, снизив побочные эффекты от действия химиотерапии.

Другим немаловажным направлением исследований является создание новых лекарственных форм. Лекарственная форма - это то, в каком виде лекарственное средство вводится в организм, например раствор для инъекций или суспензии. Существует множество разработок, использующих частицы из золота или других металлов в качестве "скорлупы", капсулы для лекарственных веществ. Размеры этих частиц позволяют им проникать через поры клеток и каналы клеточной стенки, доставляя таким образом лекарственное средство прямо к месту действия. Это способно уберечь лекарственные вещества от переработки ферментами организма, связывания с белками плазмы, что увеличивает количество неизмененного вещества, дошедшего до места действия. Проще говоря, увеличивает эффективность использования лекарств.

Близко к рассматриваемому вопросу стоит проблема адресной, прицельной доставки лекарств к органам-мишеням. Наночастицы, могут служить "курьерами", адресно доставляющими лекарственные вещества к необходимым органам, например, существует такое вещество как куркумин, обладающий мощным противораковым действием, но его использование было практически невозможно из-за плохой растворимости в воде (основного вещества внутренней среды организма), использование контейнера из наночастиц позволило исследователям из Индии обойти это ограничение. Наночастицы в данном, и многих других случаях, служат не только переносчиком терапевтических средств, но и защитным каркасом для них.

Для доставки специализированных средств возможно и использование бактерий, как показали исследования американских ученых. Бактерии перемещаются при помощи жгутиков - молекулярных пропеллеров, подчиняясь сигналам рецепторов, которые чувствуют малейшие изменения концентрации определенных химических веществ. Теоретически, изменив эти рецепторы, можно заставить бактерий реагировать на другие молекулы. Однако сделать это довольно непросто, поэтому американские ученые пошли другим путем. Они взяли кишечную палочку Escherichia coli, у которой отсутствовал один из сигнальных белков. Из-за этого она могла лишь кувыркаться на одном месте. Далее исследователи ввели специальный рибопереключатель (рибосвитч, riboswitch) - маленькую цепочку РНК, содержащую ген отсутствующего белка. Обычно она образует петлю, что препятствует репликации белка. Но рибосвитч также может связываться с маленькой молекулой теофиллина. Когда теофиллин связывается с рибосвитчем, РНК раскрывается и становится возможной экспрессия недостающего гена. Теперь жгутики могут функционировать нормально, и бактерии двигаются по направлению к их природному хемоаттрактанту. Но, хотя бактерии невосприимчивы к теофиллину, чем больше его концентрация, тем быстрее они могут двигаться. Поэтому им приходится плыть вдоль теофиллиновых дорожек, созданных учеными. Стоит бактерии свернуть с пути, как сразу срабатывает рибопереключатель, выступающий в роли тормоза. Таким образом, был разработан рибосвитч, заставляющий бактерий двигаться в заданном направлении, следуя за псевдоаттрактантом.

Бактерии, влекомые особыми молекулами, становятся "клеточными роботами" и могут быть использованы для широкого класса задач. Теперь для практических применений необходимо сделать аналогичный рибопереключатель на другие вещества, например, специфичные для опухолей. Тогда можно будет заставить бактерий доставлять лекарства или совершать иную полезную работу.

Также предлагается использование желатиновых наночастиц для транспортировки терапевтических генных структур к опухолевым клеткам, до этого предлагалось в качестве транспорта использовать вирусы (вирусные векторы), но нанотранспорт оказался более выгодным и лишенным таких недостатков вирусных переносчиков как токсичность.

Определенное значение в доставке препаратов имеет и размер наночастиц: например если сделать наночастицы достаточно большими что бы она задерживалась в легких, но одновременно слишком маленькими для того чтобы они выводились системой очищения легких. Это естественно улучшит возможности ингаляционной терапии.

Ведущим направлением в нанотехнологических исследованиях на данный момент является синтетическое направление связанное с технологиями получения новых материалов. Это направление нашло применение и в медицине. На основе нанотехнологий были получены новые шовные материалы, например, полилактатное полотно, способное без клея прикрепляться к краям ранения или хирургического надреза, при этом закрывающее его от внешней среды, препятствуя заражению и улучшая заживление. При этом, данный материал способен разлагаться ферментами организма со временем. Это свойство используется при создании полилактатных шовных нитей, которые не требуется снимать. Что облегчает работу хирургу и жизнь пациенту.

Совершенно особенную разработку создали американские ученые. На основе биоматериалов с помощью нанотехнологий был создан гель, при введении в поврежденный участок головного мозга вызывающий восстановление тканей в этом участке. При этом ткани имеют четкую структуру, соответствующую структуре неповрежденной мозговой ткани. Пока что эта разработка действует, опять же, только в опытных моделях на мышах, но в скором будущем она дойдет и до стадий клинических испытаний.

Серьезные повреждения головного мозга способны вызвать как необратимые изменения личности, так и серьезные сбои в физиологии человека вообще. Вплоть до состояния "растения". На данный момент не изобретено лекарство, способное восстанавливать нейроны и нервную ткань. Поэтому необходимость в подобном лекарстве существовала давно. Если этот гель пройдет клинические испытания и будет внедрен в практическую медицину, то самые серьезные повреждения головного мозга станут намного более легко излечимыми.

Существенную помощь в решении тех или других задач могут оказать нанотехнологии. В биологии и некоторых других науках их применение зачастую имеет огромное значение.

Необходимо сказать, что в течение последних нескольких десятилетий было выявлено порядка тридцати инфекционных патологий. Среди них следует отметить СПИД, «птичий грипп», вирус Эбола и прочие. Ежегодно в мире диагностируются миллионы новых случаев возникновения онкологических заболеваний. При этом смертность от этих патологий составляет порядка пятисот тысяч человек в год.

Имеют огромное значение для всего человечества. Преимущества использования новейших методов перед традиционной терапией очевидны. Нанотехнологии в медицине, главным образом, предполагают химическое воздействие на то или другое заболевание при помощи введения препаратов. В результате в организме формируется определенная среда, способствующая ускорению процесса выздоровления.

Как уже было сказано выше, нанотехнологии применяются в различных человека. Ученые всего мира работают над созданием различных материалов, которые могут быть применены в той или иной области. Самым простым и ярким примером применения нанотехнологии в косметологии, например, является известный всем мыльный раствор. Он не только обладает дезинфицирующими и моющими свойствами. В нем формируются мицеллы, наночастицы. Сегодня, разумеется, этот материл далеко не единственный, который используется в тех или иных целях при развитии той или иной сферы человеческой деятельности.

Примеров применения нанотехнологии в медицине достаточно много. Так, ученые создали новый класс частиц. Наночастицы - наногильзы - наделены уникальными свойствами оптического характера. Эти элементы, обладая микроскопическим диаметром (в двадцать раз меньшим, чем у эритроцитов), способны свободно перемещаться по кровеносной системе. К поверхности гильз прикрепляются антитела. Цель применения этой нанотехнологии в медицине - уничтожение Спустя несколько часов после введения гильз в организм, осуществляется облучение инфракрасным светом. Внутри происходит образование особой энергии, посредством которой и разрушаются раковые клетки.

Следует сказать, что тестирование этой нанотехнологии было осуществлено на подопытных мышах. Спустя уже десять дней после облучения отмечалось полное избавление от недуга. Более того, последующие анализы не показали новых очагов злокачественных формирований.

Ученые предполагают, что эта и прочие нанотехнологии в медицине будут способствовать развитию оперативных и недорогих методов диагностики и устранения патологий на ранних стадиях. Кроме того, внедрение новых разработок в области лекарственных препаратов может позволить восстанавливать поврежденную структуру ДНК.

Последние успехи нанотехнологий, по словам ученых, могут оказаться весьма полезными в борьбе с раковыми заболеваниями. Разработано противораковое лекарство непосредственно к цели - в клетки, пораженные злокачественной опухолью. Новая система, основанная на материале, известном как биосиликон. Наносиликон обладает пористой структурой (десять атомов в диаметре), в которую удобно внедрять лекарства, протеины и радионуклиды. Достигнув цели, биосиликон начинает распадаться, а доставленные им лекарства берутся за работу. Причем, по словам разработчиков, новая система позволяет регулировать дозировку лекарства.

На протяжении последних лет сотрудники Центра биологических нанотехнологий работают над созданием микродатчиков, которые будут использоваться для обнаружения в организме раковых клеток и борьбы с этой страшной болезнью.

Новая методика распознания раковых клеток базируется на вживлении в тело человека крошечных сферических резервуаров, сделанных из синтетических полимеров под названием дендримеры (от греч. dendron - дерево). Эти полимеры были синтезированы в последнее десятилетие и имеют принципиально новое, не цельное строение, которое напоминает структуру кораллов или дерева. Такие полимеры называются сверхразветвленными или каскадными. Те из них, в которых ветвление имеет регулярный характер, и называются дендримерами. В диаметре каждая такая сфера, или наносенсор, достигает всего 5 нанометров - 5 миллиардных частей метра, что позволяет разместить на небольшом участке пространства миллиарды подобных наносенсоров.

Оказавшись внутри тела, эти крошечные датчики проникнут в лимфоциты - белые кровяные клетки, обеспечивающие защитную реакцию организма против инфекции и других болезнетворных факторов. При иммунном ответе лимфоидных клеток на определенную болезнь или условия окружающей среды - простуду или воздействие радиации, к примеру, - белковая структура клетки изменяется. Каждый наносенсор, покрытый специальными химическими реактивами, при таких изменениях начнет светиться.

Чтобы увидеть это свечение, ученые собираются создать специальное устройство, сканирующее сетчатку глаза. Лазер такого устройства должен засекать свечение лимфоцитов, когда те один за другим проходят сквозь узкие капилляры глазного дна. Если в лимфоцитах находится достаточное количество помеченных сенсоров, то для того, чтобы выявить повреждение клетки, понадобиться 15-секундное сканирование, заявляют ученые.

Здесь ожидается наибольшее влияние нанотехнологии, поскольку она затрагивает саму основу существования общества - человека. Нанотехнология выходит на такой размерный уровень физического мира, на котором различие между живым и неживым становится зыбким - это молекулярные машины. Даже вирус отчасти можно считать живой системой, поскольку он содержит в себе информацию о своём построении. А вот рибосома, хотя и состоит из тех же атомов, что и вся органика, но такой информации не содержит и поэтому является лишь органической молекулярной машиной. Нанотехнология в своём развитом виде предполагает строительство нанороботов, молекулярных машин неорганического атомного состава, эти машины смогут строить свои копии, обладая информацией о таком построении. Поэтому грань между живым и не живым начинает стираться. На сегодняшний день создан лишь один примитивный шагающий ДНК-робот.

Наномедицина представлена следующими возможностями:

  • 1. Лаборатории на чипе, направленная доставка лекарств в организме.
  • 2. ДНК - чипы (создание индивидуальных лекарств).
  • 3. Искусственные ферменты и антитела.
  • 4. Искусственные органы, искусственные функциональные полимеры (заменители органических тканей). Это направление тесно связано с идеей искусственной жизни и в перспективе ведёт к созданию роботов обладающих искусственным сознанием и способных к самовосстановлению на молекулярном уровне. Это связано с расширением понятия жизни за рамки органического
  • 5. Нанороботы-хирурги (биомеханизмы осуществляющие изменения и требуемые медицинские действия, распознавание и уничтожение раковых клеток). Это является самым радикальным применением нанотехнологии в медицине будет создание молекулярных нанороботов, которые смогут уничтожать инфекции и раковые опухоли, проводить ремонт повреждённых ДНК, тканей и органов, дублировать целые системы жизнеобеспечения организма, менять свойства организма.

Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологии ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.

В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нанороботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью. В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.

Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.

Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.

Для достижения этих целей человечеству необходимо решить три основных вопроса:

  • 1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
  • 2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
  • 3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Основная сложность с нанотехнологией - это проблема создания первого нанобота. Существует несколько многообещающих направлений.

Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомносилового микроскопа и достижении позиционной точности и силы захвата.

Другой путь к созданию первого нанобота ведет через химический синтез. Возможно, спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе.

И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными наноботами, и мы можем использовать их для создания более универсальных роботов.

Эти наноботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами.

Работы по изучению начаты сравнительно недавно, но темпы открытий в этой области чрезвычайно высоки, многие полагают, это будущее медицины.