Робототехническая медицинская реабилитационная техника pdf. Роботы для реабилитации инвалидов

Отделение роботизированных методов медицинской реабилитации является подразделением Центра медицинской реабилитации и восстановительной медицины.

В работу отделения внедрены отечественные и зарубежные технологии восстановительного лечения и реабилитации, гармонически сочетающие классические проверенные методики и современные научные достижения.

Основное направление работы отделения - восстановительное лечение и реабилитация после нарушения мозгового кровообращения, черепно-мозговых травм, поражений опорно-двигательного аппарата.

Наличие высокотехнологичного реабилитационного оборудования с биологической обратной связью позволяет оценить функциональные резервы организма и составить индивидуальную программу лечения для каждого больного.

Комплекс Biodex Systems 4 PRO - лидер в области нейромышечного тестирования и реабилитационных упражнений. Сочетание динамических и статических мышечных нагрузок, возможность проводить мобилизацию суставов в различных направлениях позволяет осуществлять полноценное восстановление утраченных двигательных функций.

Области применения: ортопедия, неврология, травматология, спортивная медицина, производственная реабилитация, геронтология.

Комплекс обеспечивает быструю и точную диагностику, лечение и документирование нарушений, являющихся причиной функциональных расстройств суставов и мышц. В комплектацию входит набор приспособлений для работы с тазобедренным, коленным, плечевым, локтевым, голеностопным и лучезапястным суставами.

Система Biodex Systems 4 дает полную свободу в выборе режимов лечения на различных клинических этапах, что позволяет индивидуально подойти к проблемам каждого пациента.

Роботизированный реабилитационный комплекс Lokomat применяется для восстановления навыков ходьбы у больных с выраженным двигательным дефицитом вследствие черепно-мозговых и спинальных травм, последствий нарушения мозгового кровообращения.

Роботизированные ортезы точно синхронизированы со скоростью беговой дорожки и задают ногам пациента траекторию движения, которая формирует ходьбу, близкую к физиологической. Дружественный компьютерный интерфейс позволяет врачу управлять аппаратом и регулировать параметры тренировки согласно возможностям и потребностям каждого пациента Интегрированная система обратной связи визуально в реальном времени иллюстрирует параметры походки.

Роботизированный ортез Armeo позволяет повысить эффективность восстановления функции верхних конечностей, нарушенных вследствие черепно-мозговой и спинальной травм, рассеянного склероза, нарушения мозгового кровообращения; после оперативного удаления опухолей головного и спинного мозга; при посттравматических нейропатиях.

Занятия на Armeo дают возможность предотвратить угрожающую потерю мышечной силы и развитие контрактуры суставов, способствуют уменьшению спастичности, улучшению координации, обучают новым движениям. Armeo позволяет пациентам с гемипарезом, используя остаточные функциональные возможности поврежденной конечности, развивать и усиливать локомоторную и хватательную функции. Компьютерная программа содержит широкий набор эффективных и увлекательных видеоигр с различными уровнями сложности. Аппарат оснащен функцией биологической обратной связи.

THERA-VITAL - тренажер для реабилитации верхних и нижних конечностей в активно-пассивном режиме. Применяется:

  • в неврологии (инсульт, ЧМТ, спинальная травма, болезнь Паркинсона, ДЦП);
  • травматологии-ортопедии (состояние после длительной иммобилизации, после эндопротезирования);
  • в кардиологической реабилитации;
  • геронтологии (снижение дефицита движений у лиц пожилого и старческого возраста);
  • для снижения последствий дефицита двигательной активности (отеки, контрактуры суставов);
  • в целях профилактики осложнений у пациентов разных возрастов со сниженной двигательной активностью.

Реабилитационный тренажер Kinetec Centura используется для постоянной пассивной разработки плечевого сустава в целях профилактики суставной тугоподвижности, контрактуры мягких тканей и мышечной атрофии.

С применением тренажера предотвращается окоченение плечевого сустава, ускоряется процесс послеоперационного восстановления диапазона движений, улучшается качество суставной поверхности, уменьшается боль и отечность.

Показания к применению: операция на манжете мышц-вращателей, полная замена плечевого сустава, "замороженное плечо", переломы и вывихи, требующие реконструктивной операции на ключице, лопатке, артротомия, акромиопластика, ожоги, реабилитация после мастэктомии.

BTE TECHNOLOGIES (TECH TRAINER , PRIMUS RS ) - универсальные комплексы для функциональной оценки, диагностики и реабилитации опорно-двигательного аппарата. Включают большое количество адаптеров и насадок для симуляции различных профессиональных и повседневных действий (как изолированные, так и комплексные движения). Позволяют проводить тренировки во всех двигательных плоскостях. Благодаря сенсорному монитору и дружественному интерфейсу программного обеспечения значительно облегчаются тестирование и тренировки. Данные тестов и тренировок сохраняются и документируются.

Области применения: производственная и спортивная реабилитация, ортопедия, нейрореабилитация, тестирование силы.

Бесконтактный гидромассаж на аппаратах « Medistream », « Medy Jet »

Гидромассаж уже более 20 лет рекомендуется докторами и профессиональными спортсменами для облечения и снятия болей. Мощные волны теплой воды охватывают все тело, даря телу глубокий расслабляющий и восстанавливающий массаж. Процедура бесконтактного гидромассажа облегчает боль, снимает мышечное напряжение, улучшает кровообращение в массируемой области, снимает стресс и тревожность.

Альфа-капсула — это воздействие механолечебных, термолечебных и фотолечебных факторов: общая вибротерапия, системная и локальная термотерапия, импульсная фотостимуляция и селективная хромотерапия, аудиорелаксация, ароматерапия, аэроинотерапия. Альфа-массаж, проводимый в капсуле, улучшает настроение пациентов, снижает внутреннюю напряженность, значимо увеличивает прирост толерантности к физической нагрузке и стабилизирует вегетативный статус.

Показания для проведения процедур в Альфа-капсуле: избыточный вес; локальные жировые отложения; целлюлит; снижение тургора и тонуса кожи; очищение и детоксикация тела, эмоциональное напряжение, расстройства сна; неврозы; хроническая усталость; гипертоническая болезнь; головные боли; пониженный иммунитет; реабилитация после спортивных травм; последствия длительных перенесенных заболеваний.

Аппарат для пневмокомпрессии нижних конечностей PULSTAR s 2

В настоящее время пневмокомпрессия является основным методом, применяемым с целью профилактики и лечения различных хронических сосудистых заболеваний конечностей.

Пневматическая компрессия представляет собой метод активной функциональной терапии, где в качестве лечебного фактора используется дозированная физическая нагрузка - сдавливание конечностей. Процедуры пневмомассажа способствуют улучшению периферического кровообращения, ускорению тока крови, развитию коллатерального русла, уменьшению спазма сосудов, улучшению трофики тканей.

Показания к применению: местные отечные синдромы при венозной недостаточности и лимфостазе; облитерирующие заболевания нижних конечностей; снятие утомления и восстановление работоспособности после длительных физических нагрузок, вынужденной гиподинамии; в целях профилактики сосудистых заболеваний конечностей у лиц, которые длительное время по роду своей деятельности находятся на ногах; при постмастэктомических отёках верхних конечностей.

Многофункциональная кровать-массажер Nuga Best сочетает в себе различные методы оздоровления: рефлексотерапевтическое воздействие, мануальную терапию, физиотерапию, низкочастотную миостимуляцию.

Сочетание в одном изделии различных методик воздействия на организм позволяет проводить мероприятия эффективной профилактики и оздоровления по широкому спектру заболеваний:

  • опорно-двигательного аппарата (заболевания позвоночника);
  • трофических расстройств нейрогенного и сосудистого происхождения;
  • периферической нервной системы (радикулиты);
  • ситуационных стрессовых ситуаций (нервного переутомления);
  • синдромом хронической усталости и физического переутомления;
  • коррекция осанки в подростковом и юношеском возрасте;
  • в гинекологии и урологии.

Во всем мире медицинская робототехника активно развивается по трем направлениям: реабилитационная, сервисная и клиническая. Реабилитационные роботы предназначены для решения задач восстановления функций утраченных конечностей и жизнеобеспечения инвалидов, прикованных к постели (с нарушением зрения, опорно-двигательной системы и другими тяжелыми заболеваниями). Медицинские роботы сервисного назначения призваны решать транспортные задачи по перемещению пациентов, различных грузов, а также по уходу за больными, прикованными к постели. Клиническая робототехника обеспечивает полную или частичную автоматизацию процессов диагностики, терапевтического и хирургического лечения различных заболеваний.

Наибольшее практическое применение нашли хирургические роботы, используемые для выполнения роботоассистируемых операций в различных областях медицины. Применение робототехники при выполнении операций уменьшает зависимость результата оперативного вмешательства от человеческого фактора и способствует расширению технических возможностей при выполнении сложных операций. С использованием роботов заметно улучшаются эргономические показатели в работе хирурга, повышается точность и контролируемость воздействия. В случае минимально-инвазивной хирургии роботы увеличивают манипулятивность хирургического инструмента, позволяя увеличить доступный хирургу объем пространства внутри тела пациента. Важным преимуществом роботизированной хирургии является возможность конвертируемости традиционных операций в малоинвазивное вмешательство.

Современным этапом развития малоинвазивной хирургии явилось внедрение в клиническую практику специализированных роботов, наиболее известным из которых является робот Da Vinci. Во многих странах ведутся работы по созданию специализированной хирургической робототехники (США, Германия, Япония, Южная Корея, Франция и др.).

В России впервые идею возможности роботизации оперативного вмешательства применительно к кровеносным сосудам проф. Г.В. Саврасов и академик А.В. Покровский стали обсуждать в 80-е годы прошлого столетия. Это был период разработки и активного внедрения в клиническую практику технологий ультразвуковой ангиохирургии, предназначенных для внутрисосудистых воздействий.

Достоинство внутрисосудистой реконструкции заключается, с одной стороны, в ее физиологичности, так как восстанавливается естественное русло кровеносной системы, а с другой стороны – в возможности минимальной травматизации благодаря тому, что восстановление проходимости сосуда осуществляется на значительном протяжении от места хирургического доступа. Однако удаление зоны воздействия от места ввода технического средства, а также отсутствие, как правило, прямой визуальной информации из зоны воздействия осложняют работу хирурга, ставя в прямую зависимость результаты оперативного вмешательства от индивидуальных качеств самого хирурга. Но особенно сильно влияние человеческого фактора проявляется в тех случаях, когда в качестве основного физического агента воздействия на кровеносный сосуд используется не мускульное усилие хирурга, а высокоэнергетический и быстродействующий источник, например, ультразвук. Для того чтобы существенно улучшить условия работы хирурга и при этом повысить эффективность и качество выполняемых им операций, необходимо принципиально изменить технику хирургических операций с использованием средств мехатроники и робототехники.

  • мобильных микроробототехнических систем , способных в автоматическом и полуавтоматическом режимах перемещаться по трубчатым органам, осуществляя диагностику и воздействие на патологические;
  • роботов-манипуляторов для выполнения широкого круга оперативных вмешательств в различных областях медицины.


Более подробно с состоянием проблемы можно ознакомиться на видео:

ООО «ОЛМЕ» Санкт-Петербург., к.м.н. Вагин А.А.

Развитие робототехники в восстановительной медицине, реабилитация обездвиженных больных - проблемы и решения.

Конкуренцию на сегодняшний день определяет не обладание большими ресурсами или потенциалом производства, а объем знаний накопленный предыдущими поколениями, способность его структурировать, им управлять и персонально использовать.
Одной из важных задач Всемирной организации здравоохранения (ВОЗ) является внедрение в клиническую медицину перспективных ИИТ с методами и средствами ИИ для совместного информационного взаимодействия и использования.

Современная концепция интеллектуальных информационных систем предполагает объединение электронных записей о больных (electronic patient records) с архивами медицинских изображений, данными мониторинга с медицинских приборов, результатами работы визированных лабораторий и следящих систем, наличие современных средств обмена информацией (электронной внутрибольничной почты, Internet, видеоконференций и т.д.) .

В настоящее время активное становление и интенсивное развитие получило перспективное профилактическое направление в виде восстановительной медицины, сложившееся на основе принципов санологии и валеологии. Высокая заболеваемость и смертность, неуклонное снижение качества жизни, отрицательный прирост народонаселения способствовали разработке и внедрению в практическую медицину самостоятельного профилактического направления.

Однако, существующие на сегодняшний день экономические, социальные, правовые, медицинские учреждения выполняют функции в основном по лечению и реабилитации инвалидов, вопросами предупреждения и реабилитационного лечения болезни занимаются недостаточно. Экономическая и социальная ситуация в нашей стране способствует появлению чувства страха и напряженности при наличии травмы или болезни у человека, является источником психосоциальных проблем.

Необходимость активного сохранения здоровья в условиях инфраструктуры медицинских организаций определяется стремлением вывести медицину на новый виток развития. Однако дальнейшее реформирование ее затруднено не только из-за недостаточного финансирования данной отрасли, но и четких единых нормативов и методик планирования, ценообразования, тарификации медицинских услуг, а также распределением ответственности между органами исполнительной власти и ее субъектов за выполнением определенных объемов медицинской помощи.

За последнее десятилетие был достигнут значительный прогресс в медицинской робототехнике. Сегодня несколько тысяч операций на предстательной железе выполняются при помощи медицинских роботов с минимально возможной травматичностью для пациентов. Медицинские роботы позволяют обеспечить минимальную травматичность хирургических операций, более быстрое восстановление пациентов, минимальный риск инфекции и побочных эффектов. Хотя число медицинских процедур, которые выполняют роботы еще сравнительно невелико, следующее поколение робототехники сможет предоставить хирургам более широкие возможности для визуализации операционного поля, обратной связи с хирургическим инструментом и окажет огромное влияние на прогресс в хирургии.

По мере старения населения, число людей, страдающих сердечно-сосудистыми заболеваниями, инсультами и другими заболеваниями продолжает расти. После перенесенного инфаркта, инсульта, позвоночно-спинальной травмы очень важно, чтобы пациент, насколько это возможно, регулярно занимался физическими упражнениями.

К сожалению, пациент обычно вынужден заниматься физической терапией в лечебном учреждении, что зачастую невозможно. Следующее поколение медицинских роботов поможет пациентам выполнять хотя бы часть необходимых физических упражнений в домашних условиях.
Робототехника также начинает использоваться в здравоохранении для ранней диагностики аутизмы,
тренировки памяти у людей с особенностями психического развития.

Развитие робототехники в других странах.

Европейская комиссия недавно приступила к осуществлению программы развития робототехники, в которую вложило 600 млн. евро чтобы укрепить обрабатывающую промышленность и сферу услуг. Корея планирует вложить 1 млрд. долларов США в развитие робототехники в течение 10-ти лет. Подобные, но меньшие программы существуют в Австралии, Сингапуре и Китае. В Соединенных Штатах, финансирование исследований и разработок в области робототехники осуществляется, в основном, в оборонной промышленности, в частности, для беспилотных систем. Но существует и программы развития робототехники в области здравоохранения и услуг. Несмотря на то, что промышленные отрасли робототехники родился в США, мировое лидерство в этой области в настоящее время принадлежит Японии и Европе. И не очень понятно, как США смогут сохранить их лидирующие позиции в течение длительного времени без национальной приверженности развития и внедрения технологий робототехники .

Существующие структурные подразделения осуществляют этапность реабилитационных мероприятий по принципу: стационар – стационарно-курортное лечение – поликлиника. На I этапе стационарной помощи больному устраняются и предупреждаются осложнения острого заболевания, осуществляется стабилизация процесса, проводится физическая и психическая адаптация.

Санаторно-курортный этап (II) – это промежуточное звено между стационаром и поликлиникой, где при относительной стабилизации клинико-лабораторных показателей, проводится медицинская реабилитация больных на основе использования целебных природных факторов. Ш этап – это поликлиника, основное назначение которой на современном уровне амбулаторно-поликлинической помощи выявить компенсаторные возможности организма, их развитие в разумных пределах, а также осуществить комплекс мероприятий, направленных на борьбу с факторами риска сопутствующих осложнений и ухудшений заболеваний. Однако, эта система помощи на практике не всегда осуществима.

Основная трудность – значительные экономические и финансовые затраты на госпитализацию больных, особенно с пограничной стадией заболевания, высокая стоимость санаторно-курортного лечения, недостаточная оснащенность поликлиник современными методами обследования и лечения.

В настоящее время существует несколько международных стандартов регистрации клинических данных в МИС лечебных учреждений:

  • SNOMED International (College of American Pathologists, США);
  • Unified medical language system (National Medical Library, США);
  • Read clinical codes (Центр по кодированию и классификации национальной системы здравоохранения, Великобритания) .

В последние годы в США большинство крупных медицинских центров уже не работают без информационных систем (ИС), на которые приходится более 10% расходов больниц .
В здравоохранении США объем расходов на информационные технологии составляет примерно 20 млрд. долларов в год. Особый интерес вызывают медицинские системы, которые непосредственно помогают врачу увеличить эффективность работы и повысить качество лечения больных .

Проведенные исследования за последние пять лет дали возможность более полно понять процессы происходящие при травме спинного мозга и ее последствиях, а также принципах воздействия на негативные моменты происходящие в зоне повреждения. Такое пристальное внимание именно к этой категории пациентов объяснимо тяжестью последствий возникающих в процессе травмы и последующего дальнейшего развития травматической болезни спинного мозга.

Морфологическое изучение травмированного спинного мозга (СМ) указывает на то, что повреждение тканей не ограничивается областью воздействия разрушающей силы, а, захватывая первично интактные участки, приводит к образованию более обширного повреждения. При этом в процесс вовлекаются структуры головного мозга, а также периферической и вегетативной нервной систем. Установлено, что сенсорные системы изменяются гораздо глубже, чем моторные .

Современная концепция патогенеза травматического повреждения СМ рассматривает два основных взаимосвязанных механизма гибели клеток: некроз и апоптоз.
С некрозом связывают непосредственное первичное повреждение мозговой ткани в момент приложения травматической силы (контузия или сдавление паренхимы мозга, дисциркулляторные сосудистые расстройства). Некротический очаг впоследствии эволюционирует в глиально-соединительнотканный рубец, вблизи которого в дистальном и проксимальном отделах СМ образуются мелкие полости, образующие посттравматические кисты различного размера .

Апоптоз является механизм отсроченного (вторичного) повреждения клеток, представляющего собой их физиологическую гибель, необходимую в норме для обновления и дифференцировки тканей . Развитие апоптоза при травме СМ связано с воздействием на геном клетки возбуждающих аминокислот (глутамат), ионов Са2+, медиаторов воспаления, ишемии и пр. .
Первоначально наблюдается апоптоз нейронов вблизи от некротического очага (пик гибели - 4-8 часов). Затем развивается апоптоз микро- и олигодендроглии (пик гибели – третьи сутки). Следующий пик глиального апоптоза наблюдается через 7-14 суток на отдалении от места травмы и сопровождается гибелью олигодендроцитов.
Вторичные патологические изменения включают петехиальные кровоизлияния и геморрагический некроз, свободнорадикальное окисление липидов, увеличение протеазной активности, воспалительный нейронофагоцитоз и тканевую ишемию с дальнейшим высвобождением ионов Са2+, возбуждающих аминокислот, кининов, серотонина. Всё это в конечном итоге проявляется распространенной восходящей и нисходящей дегенерацией и демиелинизацией нервных проводников, гибелью части аксонов и глии.

Расстройства в деятельности ряда органов и систем, непосредственно не пострадавших при травме, создают новые многообразные патологические ситуации. В денервированных тканях повышается чувствительность к биологически активным веществам (ацетилхолину, адреналину и т. д.), возрастает возбудимость рецептивных полей, снижается порог мембранного потенциала, уменьшается содержание АТФ, гликогена, креатинфосфата. В паретичных мышцах нарушаются липидный и углеводный обмен, что влияет на их механические свойства - растяжимость и сократимость, способствует ригидности.

Расстройство минерального обмена приводит к формированию параоссальных и периартикулярных осификатов, осифицирующего миозита, остеопороза.
Все это может стать причиной новых осложнений: пролежней, трофических язв, остеомиелита, суставно-мышечных контрактур, анкилозов, патологических переломов, костных деформаций - в опорно-двигательном аппарате; камнеобразования, рефлюкса, воспаления, почечной недостаточности - в мочевыводящей системе. Складываются связи, носящие разрушительный характер. Возникает угнетение и функциональное выпадение ряда систем, непосредственно в травме не пострадавших. Под действием непрерывного потока афферентной импульсации активные нервные структуры впадают в состояние парабиоза и становятся невосприимчивыми к специфическим импульсам.

Параллельно формируется и другая динамическая линия - восстановительно-приспособительных функциональных изменений. В условиях глубокой патологии происходит оптимально возможная перестройка механизмов обеспечения адаптации к среде. Организм переходит на новый уровень гомеостаза. В этих условиях гиперреактивности и напряжения формируется травматическая болезнь спинного мозга (ТБСМ) .
С целью проверки предположения о существовании способов предупреждения формирования рубцовой ткани в зоне травмы спинного мозга, до прорастания через нее аксонов нейронов (рабочая гипотеза), Вагиным Александром Анатольевичем была проведена экспериментальная работа на крысах породы «Вистар». Для постановки экспериментов отбирали хорошо развитых и здоровых животных с хорошим поведением, половозрелых, годовалого возраста.

Все экспериментальные процедуры и манипуляции проводились в операционной кафедры патологической физиологиии Военно-Медицинской академии в условиях, отвечающих требованиям СанПин 2.1.3.1375-03. Животные укладывались на операционный стол. Применяли эфирный наркоз. В контрольной группе (группа А) было 22 крысы, в основных группах (группы В и С) – по 21 и 22 соответственно. Всем животным была проведена частичная (под эфирным наркозом) денервация нижней части спинного мозга на уровне 3 грудного позвонка. Экспериментальную денервацию у подопытных животных выполняли в стерильных условиях с соблюдением правил асептики и антисептики. Для нанесения спинальной травмы крысам, использовали только прямую иглу 1,2x40 мм и шовный материал для наложения сдавливающей петли на СМ (супрамидная нить диаметром 0.1 мм стерильная). После нанесения экспериментальной травмы в послеоперационном периоде животные разных групп содержались по разному, но все погружались в медикаментозный сон (Sol. Relanii 0,3 внутрибрюшинно, 2 раза в сутки) на весь срок наблюдения.

Группа контроля (А) содержалась в стандартных условиях, а у крыс основных групп (В и С) применялась методика содержания в условиях фиксации в специальной кювете. Устройство с кюветой служили прообразом «оптимальной восстанавливающей среды» и состояло из фиксированного ложа выполненного из полиуретановой трубы диаметром 5см, длиной 10 см., рассеченной по длиннику с оставлением лепестков длиной 5 см., шириной 1 см. для фиксации лап животного. Лепестки кюветки соединены с движущимися рычагами электродвигателей (4шт.), штоки которых совершают линейные движения позволяющие совершать заданные движения лапами животного (пассивные движения) через релейное устройство получающее команды из промышленного компьютера по заданной программе. В описанное ложе животное укладывалось на спину. Его лапы фиксировались к лепесткам кюветки. Пассивные движения осуществлялись в виде отведения и приведения конечностей животного. Возможные активные движения у животных осуществлялись ими в периоды пробуждения.

Эксперимент выполняли по двум направлениям:

  1. Исследовались изменения на срезах спинного мозга животных после травмы во всех группах под световым и электронным микроскопами.
  2. В ходе наблюдения за животными контрольной и основных групп фиксировались сроки восстановления болевой, температурной чувствительности, а также двигательной активности.

В результате проведенных гистологических, патофизиологических исследований получены следующие результаты. При гистологическом изучении срезов спинного мозга крыс в контрольной группе А гибель клеток в результате полученной травмы после непосредственного повреждения спинного мозга происходит в результате некроза и продолжается до 14 дней. В дальнейшем гибель клеток происходит в результате апоптоза, который наблюдается до 21-30 дней с формированием рубцовой ткани. Рубцовая ткань формируется из дегенерированных хаотично расположенных миелиновых волокон и осевых цилиндров не дающих возможности прорастания аксонов нейронов через зону рубцевания. Область формирования рубцовой ткани включает ядра клеток, переходящих в стадию апоптоидных телец.

В то же время, в основной группе В* - (В и С) выявляется отчетливая гистологическая картина восстановления клеток нейроглии и нейронов в условиях применения метода ПДИК.
При обработке статистических материалов экспериментальной патофизиологической части исследования данных в группе А восстановления болевой и температурной чувствительности, а также двигательной функции не отмечено.
В группе В* - (В и С) восстановление болевой чувствительности отмечено в 21,5% случаев, в 78,5% случаев восстановления не наступило. Восстановление температурной чувствительности отмечено в 15,4 % подопытных животных, в 84,6 % случаев восстановления не отмечено. В результате изучения изменения двигательной активности – восстановление наблюдалось только в основной группе В*. Отмечено, что движения в конечностях восстановились в 26,2% животных, в 73,8% случаев восстановления не наступило. Согласно данным непараметрического анализа на состояние болевой, температурной чувствительности, двигательной функции у исследуемых крыс оказывает достоверное (р<0,05) влияние на комплекс реабилитационных лечебных мероприятий с использованием метода постоянной длительной импульсной кинетикотерапии. Все данные используемые в анализе измерялись в номинальной шкале, для которой используются следующие критерии: Фи, V Крамера и коэффициент сопряженности, подтверждающие выявленные значимости различий встречаемых параметров в исследуемых группах (р<0,05).

Практическая апробация экспериментальной системы на подопытных животных привела к выводу, что реабилитационная методика, направленная на адекватное использование обнаруженного феномена создания оптимизирующих условий для восстановления функций поврежденного СМ должна обеспечивать следующие условия:

  • периодическое создание раздражения эфферентных и афферентных путей выше и ниже очага повреждения СМ;
  • замыкание рефлекторной дуги и тем самым включения в работу сегментарно-рефлекторного аппарата спинного мозга через один и тот же промежуток времени, с одной и той же силой, в одной и той же последовательности длительное время;
  • работать в круглосуточном режиме на протяжении всего времени реабилитации.

Анализ результатов экспериментальной части работы показал, что применение метода постоянной длительной импульсной кинетикотерапии в посттравматическом периоде в клинических условиях у пациентов с последствиями спинальных травм может стимулировать восстановление утраченных функций органов и систем.

При переводе экспериментально подтвержденной модели оптимальной физиологической среды на платформу клинической апробации исходили из того, что в основу разрабатываемой новой методики реабилитационного лечения таких больных должны будут решаться основные задачи реабилитации:

  • создание максимально благоприятных условий для течения регенеративных процессов в спинном мозге;
  • предупреждение и лечение пролежней, свищей, остеомиелитов, контрактур, деформаций костно-суставного аппарата;
  • устранение или уменьшение болевого синдрома;
  • установление самостоятельных контролируемых актов мочеиспускания и дефекации;
  • предупреждение и лечение осложнений со стороны мочевыделительной, дыхательной и сердечно-сосудистой систем;
  • предупреждение и лечение атрофий и спастичности мышц;
  • выработка способности к самостоятельному передвижению и самообслуживанию.

При финансовой поддержке компании ООО “ОЛМЕ” была создана система реабилитационная кинетическая, способствующая проведению в автоматическом режиме периодически создаваемого раздражения эфферентных и афферентных путей, замыкания рефлекторной дуги и, тем самым, включения в работу сегментарно-рефлекторного аппарата спинного мозга через один и тот же промежуток времени, с одной и той же силой, в одной и той же последовательности в круглосуточном режиме на протяжении всего времени нахождения пациента на реабилитации (сутки, недели, месяцы и годы) и позволяющая сохранить суставно-мышечный аппарат, периферическую нервную систему и сегментарный аппарат, тем самым позволяя говорить о новых подходах реабилитации .

Несмотря на отсутствии финансирования со стороны государства, сегодня компанией ООО “ОЛМЕ” заложены основы робототехники с информационными технологиями для реабилитации обездвиженных больных в течении длительного времени в домашних условиях в нашей стране. Данное направление развития реабилитации дает возможность значительно снизить смертность и инвалидизацию у этой категории больных, увеличить продолжительность жизни и в большинстве случаев через 4-5 лет вернуться к полноценной трудовой деятельности.

Список литературы:

  1. Адо А.Д. Патологическая физиология./ А. Д. Адо, Л. М. Ишимова. - М., 1973. - 535 с.
  2. Вагин А.А. Патофизиологическое обоснование применения метода постоянной длительной импульсной кинетикотерапии в лечении и реабилитации больных с последствиями спинальной травмы: дис. канд. мед. наук. – СПб., 2010.– 188 с.
  3. Басакьян А.Г. Апоптоз при травматическом повреждении спинного мозга: перспективы фармакологической коррекции / А. Басакьян, А.В. Басков, Н.Н.. Соколов, И.А Борщенко.- Вопросы медицинской химии № 5, 2000. [Электронный ресурс]. - Режим доступа: http://www.jabat.narod.ru/005/0145.htm. или http://medi.ru/pbmc/8800501.htm
  4. Борщенко И. А. Некоторые аспекты патофизиологии травматического повреждения и регенерации спинного мозга. / И. А. Борщенко, А. В. Басков, А. Г. Коршунов, Ф. С. Сатанова // Журнал Вопросы нейрохирургии. - №2.- 2000. [Электронный ресурс]. - Режим доступа: http://sci-rus.com/pathology/index.htm.
  5. Викторов И. В. Современное состояние исследований регенерации центральной нервной системы in vitro и in vivo./ И. В. Викторов // Второй Всесоюзный симпозиум "Возбудимые клетки в культуре ткани". - Пущино, 1984. - С. 4-18.
  6. Георгиева С. В.Гомеостаз, травматическая болезнь головного и спинного мозга. / С. В. Георгиева, И. Е. Бабиченко, Д. М. Пучиньян - Саратов, 1993 – 115 c
  7. Гретен А. Г. Проблемные аспекты механизмов восстановительных процессов в мозге. / А. Г. Гретен. // Механизмы и коррекция восстановительных процессов мозга. - Горький, 1982. - С. 5 -11.
  8. Aranda J.M. The problem-oriented medical records: Experiences in a community hospital. JAMA 229:549-551, 1974
  9. Braunberg A.C. Smart Card"s Appeal Hastens Jump into Mainstream // Signal. 1995. - January. P.35-39.
  10. Buchanan J.M. Automated Hospital Information Systems. // Mil. Med. - 1996. -Vol. 131,№ 12.-P.1510-1512.
  11. ISO/IEC JTC1/SC 29 N1580, 1996-04-23. Expert from ISO Bulletin: Standards for Global Infrastracture Infrastructure, What is the GII? Medicine 2001: New Technologies, New Realities, New Communities //MedNet- 1996, August 4.-8 p.
  12. Van Hentenryck K. Health Level Seven. Shedding light on HL7"s Version 2.3 Standard. // Healthc Inform. - 1997. - Vol. 14, № 3. - P.74.
  13. Wilson I.H., Watters D. Use of personal computers in a teaching hospital in Zambia //Br. Med. F. - 1988. - vol. 296, N 6617. - P. 255-256.
  14. Пузин М.Н., Кипарисова Е.С., Гюнтер Н.А., Кипарисов В.Б. Кафедра нервных болезней и нейростоматологии «Медбиоэкстрем», Клиническая больница «Медбиоэкстрем» №6, поликлиника №107 г. Москва
  15. roboting.ru/tendency/727-obzor-pers
  16. Нейротравматология: Справочник./ Под ред. А.Н. Коновалова, Л.Б. Лихтермана, А.А. Потапова.- Москва, 1994.- 356 с. [Электронный ресурс]. - Режим доступа: http://sci-rus.com/reference_book/ref_00.htm
  17. Окс С. Основы нейрофизиологии: пер. с англ./ С. Окс - М., Мир, 1969. - 448 с.
  18. Ромоданов А.П., Некоторые проблемы травмы позвоночника и спинного мозга по данным зарубежной литературы./ А.П. Ромоданов, К.Э. Рудяк. // Вопр.нейрохирургии. - 1980. - № 1. - С.56 - 61
  19. Шевелев И. Н. Восстановление функции спинного мозга: современные возможности и перспективы исследования./ И. Н. Шевелев, А. В. Басков, Д. Е. Яриков, И. А. Борщенко // Журнал Вопросы нейрохирургии - 2000. - № 3. [Электронный ресурс]. - Режим доступа: http://www.sci-rus.com/pathology/regeneration.htm
  20. Lockshin R.A. Nucleic acids in cell death. Cell agening and cell death./ R.A Lockshin, Z. Zakeri-Milovanovic./ Eds. I. Devis, and D.C. Sigl.. – 1984, Cambridge. - P. 243 - 245
  21. Yong C., Arnold P.M., Zoubine M.N., Citron B.A., Watanabe I., Berman N.E., Festoff B.W. // J. Neurotrauma. – 1998 - № 15. – P. 459 - 472.
  • Просмотров: 7383
  • " onclick="window.open(this.href," win2 return false > Печать

Вторая половина ХХ века стала временем интенсивного развития всех областей науки, техники, электроники и роботостроения. Медицина стала одним из главных векторов внедрения роботов и искусственного интеллекта. Главной целью развития медицинской робототехники является высокая точность и качество обслуживания, повышение эффективности лечения, уменьшение рисков нанесения вреда здоровью человека. Поэтому в этой статье мы рассмотрим новые методы лечения, а также использование роботов и автоматизированных систем в различных областях медицины.

Еще в середине 70-х годов в больнице городе Фэрфакс, США, штат Виржиния, появился первый медицинский мобильный робот ASM, который перевозил контейнеры с подносами для питания больных. В 1985 году впервые мир увидел роботизированную хирургическую систему PUMA 650, разработанную специально для нейрохирургии. Чуть позже хирурги получили новый манипулятор PROBOT, а в 1992 году появилась система RoboDoc, применявшаяся в ортопедии при протезировании суставов. Через год компания Computer Motion Inc. представила автоматическую руку Aesop для удержания и изменения положения видеокамеры при лапароскопических операциях. А в 1998 году этот же производитель создал более совершенную систему ZEUS. Обе эти системы не являлись полностью автономными, их задачей было ассистирование врачам при операции. В конце 90х годов компания-разработчик Intuitive Surgical Inc создала универсальную роботизированную хирургическую систему с дистанционным управлением – Da Vinci, которая с каждым годом совершенствуется и внедряется во многие медицинские центры мира до сих пор.

Классификация медицинских роботов:

В настоящее время роботы играют колоссальную роль в развитии современной медицины. Они способствуют точной работе при операциях, помогают провести диагностику и поставить правильный диагноз. Заменяют отсутствующие конечности и органы, восстанавливают и улучшают физические возможности человека, снижают время на госпитализацию, обеспечивают удобство, быстроту реагирования и комфорт, экономят финансовые затраты на обслуживание.

Существует несколько видов медицинских роботов, отличающихся своими функциональными возможностями и конструкцией, а также сферой применения для различных областей медицины:

Роботы-хирурги и роботизированные хирургические системы - применяются для проведения сложных хирургических операций. Являются не автономными устройствами, а дистанционно управляемым инструментом, который обеспечивает врача точностью, повышенной сноровкой и управляемостью, дополнительной механической силой, уменьшает утомляемость хирурга, снижает риск заболевания хирургической бригады гепатитом, ВИЧ и другими заболеваниями.

Роботы-симуляторы пациентов - предназначены для отработки навыков принятия решений и практических врачебных интервенций в лечении патологий. Такие устройства полностью воспроизводят физиологию человека, моделирует клинические сценарии, реагируют на введение препаратов, анализируют действия обучаемых и соответствующим образом реагируют на клинические воздействия.

Экзоскелеты и роботизированные протезы - экзоскелеты способствуют повышению физической силы и помогают при восстановительном процессе опорно-двигательного аппарата. Роботизированные протезы - импланты, которые заменяют отсутствующие конечности, состоят из механико-электрических элементов, микроконтроллеров с искусственным интеллектом, а также способны управляться от нервных окончаний человека.

Роботы для медицинских учреждений и роботы-помощники - являются альтернативой санитарам, медсестрам и медбратам, сиделкам, няням и другому медицинскому персоналу, способны обеспечивать уход и внимание пациенту, помогать в реабилитации, обеспечивать постоянную связь с лечащим врачом, транспортировать больного.

Нанороботы - микророботы, действующие в организме человека на молекулярном уровне. Разрабатываются для диагностики и лечения раковых заболеваний, проведения исследований кровеносных сосудов и восстановления поврежденных клеток, могут анализировать структуру ДНК, проводить ее корректировку, уничтожать бактерии и вирусы и т.д.

Другие специализированные медицинские роботы - существует огромное количество роботов, помогающие в том или ином процессе лечения человека. Например, устройства, которые способны автоматически перемещаться, дезинфицировать и кварцевать больничные помещения, замерять пульс, брать кровь на анализ, производить и выдавать медикаменты и др.

Рассмотрим подробнее каждый вид роботов на примерах современных автоматизированных устройств, разрабатываемых и внедренных во многих сферах медицины.

Роботы-хирурги и роботизированные хирургические системы:

Самым известным роботом-хирургом во всем мире является аппарат "Da Vinci". Устройство, произведенное компанией Intuitive Surgical, весит полтонны и состоит из двух блоков, один - блок управления, предназначен для оператора, а второй - четырёхрукий автомат, который выполняет роль хирурга. Манипулятор с искусственными запястьями имеет семь степеней свободы, аналогично с рукой человека, и 3D визуализационную систему, которая выводит трехмерное изображение на монитор. Такая конструкция повышает точность движений хирурга, исключает тремор рук, неловкие движения, уменьшает длину разрезов и кровопотерю во время операции.

Робот хирург Da Vinci

С помощью робота возможно провести огромное количество различных операций таких, как восстановление митрального клапана, реваскуляризация миокарда, абляция тканей сердца, установка эпикардиального электронного стимулятора сердца для бивентрикулярной ресинхронизации, операции на щитовидной железе , желудочное шунтирование, фундопликация по Nissen, гистерэктомия и миомэктомия, операции на позвоночнике, замена дисков, тимэктомия - операция по удалению вилочковой железы, лобэктомия легкого, операции в урологии , эзофагоэктомия, резекция опухоли средостения, радикальная простатэктомия, пиелопластика, удаление мочевого пузыря, перевязка и развязка маточных труб , радикальная нефрэктомия и резекция почки, реимплантация мочеточника и другие.

В настоящее время развернулась борьба за рынок медицинских роботов и автоматизированных хирургических систем. Ученые и компании-производители медицинского оборудования стремятся внедрить свои устройства, поэтому с каждым годом появляется все больше роботизированных аппаратов.

Конкурентами "Da Vinci" стали новый робот-хирург MiroSurge , предназначенный для операций на сердце, роботизированная рука от компании UPM для точной вставки игл, катетеров и других хирургических инструментов в процедурах минимально инвазивной хирургии, хирургическая платформа под названием IGAR от компании CSII , роботизированная система-катетер Sensei X , производства Hansen Medical Inc для проведения сложных операций на сердце, система для трансплантации волос ARTAS от Restoration Robotics , хирургическая система Mazor Renaissance , которая помогает производить операции на позвоночнике и головном мозге, робот-хирург от ученых из SSSA Biorobotics Institute , а также робот-помощник для отслеживания хирургических инструментов от GE Global Research , находящийся в стадии разработки, и многие другие. Роботизированные хирургические системы служат ассистентами или помощниками для врачей и не являются полностью автономными устройствами.

Робот хирург MiroSurge


Робот хирург от UPM

Робот хирург IGAR

Робот катетер Sensei X

Роботизированная система по трансплантации волос ARTAS

Робот хирург Mazor Renaissance

Робот хирург от SSSA Biorobotics Institute

Робот для отслеживания хирургических инструментов от GE Global Research

Роботы-симуляторы пациентов:

Для отработки практических навыков будущих врачей существуют специальные роботы-манекены, которые воспроизводят функциональные особенности сердечно–сосудистой, дыхательной, выделительной систем, а также непроизвольно реагируют на различные действия обучающихся, например, при введении фармакологических препаратов. Самый популярный робот-симулятор пациента – HPS (Human Patient Simulator) от американской компании METI. К нему можно подключить прикроватный монитор и отслеживать показатели кровяного давления, минутного сердечного выброса, ЭКГ и температуры тела. Устройство способно потреблять кислород и выделять углекислый газ, как при настоящем дыхании. В режиме анестезии возможно поглощение или выделение закиси азота. Такая функция обеспечивает отработку навыков по искусственной вентиляции легких. Зрачки в глазах робота способны реагировать на свет, а подвижные веки закрываются или открываются в зависимости от того, находится ли пациент в сознании. На сонных, плечевых, бедренных, лучевых подколенных артериях прощупывается пульс, который меняется автоматически и зависит от артериального давления.

Симулятор HPS имеет 30 профилей пациентов с различными физиологическими данными, имитируя здорового мужнину, беременную женщину, пожилого человека и т.д. В процессе обучения моделируется определенный клинический сценарий, в котором описывается место действия и состояние пациента, цели, необходимое оборудование и медикаменты. Робот имеет фармакологическую библиотеку, состоящую из 50 препаратов, включая газообразные анестетики и внутривенные препараты. Управление манекеном производится с помощью беспроводного компьютера, позволяя инструктору контролировать все аспекты процесса обучения непосредственно рядом со студентом.

Следует отметить большую популярность манекенов-симуляторов рожениц, например, GD/F55. Он разработан для обучения медицинского персонала в отделениях акушерства и гинекологии, позволяет отработать практические навыки и умения в гинекологии, акушерстве, неонтологии, педиатрии, интенсивной терапии и сестринском уходе в родильном отделении. Робот Simroid имитирует пациента в кресле стоматолога, его ротовая полость в точности повторяет человеческую. Устройство способно симулировать звуки и стон, которые создает человек, если ему больно. Существуют роботы-тренажеры для обучения манипуляционной технике. Это, по сути, муляж человека с имитаторами вен и сосудов, выполненных из эластичных трубок. На таком устройстве студенты отрабатывают навыки венесекции, катетеризации, венепункции.

Экзоскелеты и роботизированные протезы:

Один из самых известных медицинских устройств является роботизированный костюм - экзоскелет. Он помогает людям с ограниченными физическими возможностями перемещать свои тела. В момент, когда человек пытается пошевелить руками или ногами, специальные датчики на коже считывают небольшие изменения в электрических сигналах организма, приводя в рабочее состояние механические элементы экзоскелета. Одними из популярных устройств стали Walking Assist Device (вспомогательное устройство для ходьбы) от японской компании Honda , реабилитационный экзоскелет HAL от компании Cyberdyne , широко применяемый в японских больницах, аппарат Parker Hannifin университета Вандербильта (Vanderbilt University) , дающий возможность двигать суставами бедер и колен, мощный экзоскелет NASA Х1 , разработанный для космонавтов и парализованных людей, экзоскелет Kickstart от Cadence Biomedical , работающий не от батареи, а использующий кинетическую энергию, генерируемую человеком при ходьбе, экзоскелеты eLEGS, Esko Rex, HULC от производителя Ekso Bionics , ReWalk от компании ARGO , Mindwalker от компании Space Applications Services , помогающие парализованным людям, а также уникальный мозг-машинный интерфейс (BMI) или просто экзоскелет для мозга MAHI-EXO II для восстановления двигательных функций методом считывания мозговых волн.

Широкое применение экзоскелетов помогает многим людям во всем мире почувствовать себя полноценными. Даже полностью парализованные люди уже сегодня имеют возможность ходить. Ярким примером служат роботизированные ноги физика Амита Гоффера , которые управляются с помощью специальных костылей и могут автоматически определять, когда нужно сделать шаг, распознавать речевые сигналы "вперед", "сидеть", "стоять".

Экзоскелет для ходьбы Walking Assist

Экзоскелет HAL от Cyberdyne

Экзоскелет Parker Hannifin

Экзоскелет NASA Х1

Экзоскелет Kickstart от Cadence Biomedical

Экзоскелет HULC от Ekso Bionics

Экзоскелет ReWalk от ARGO

Экзоскелет Mindwalker от Space Applications Services


Экзоскелет для мозга MAHI-EXO II

Экзоскелет от Амит Гоффера

Но что же делать, когда конечности отсутствуют? Это касается в основном ветеранов войны, а также жертв случайных обстоятельств. В связи с этим такие компании, как компания Quantum International Corp (QUAN) и их экзопротезы и Defense Advanced Research Projects Agency (DARPA) совместно с Департаментом помощи ветеранам, Центром реабилитации и Службой развития США вкладывают огромные средства в исследование и разработку роботизированных протезов (бионических рук или ног), которые обладают искусственным интеллектом, способные чувствовать окружающую среду и распознавать намерения пользователя. Эти устройства с точностью имитируют поведение природных конечностей, а также управляются с помощью собственного мозга (микроэлектроды, имплантированные в мозг, или датчики считывают нейросигналы и передают их в виде электрических сигналов в микроконтроллер). Обладатель самой популярной бионической руки стоимостью в 15000 долларов США - британец Найджел Экланд, который ездит по миру и пропагандирует использование искусственных роботизированных протезов.

Одним из важных научных разработок стали искусственные роботизированные лодыжки iWalk BiOM , разработанные профессором Массачусетского технологического института Хью Херром (Hugh Herr) и его группой биомехатроники в лаборатории MIT Media Lab. iWalk получает финансирование от американского Департамента по делам ветеранов и Министерства обороны, и поэтому многие инвалиды-ветераны, служившие в Ираке и Афганистане, уже получили свои бионические лодыжки.

Роботизированные лодыжки iWalk BiOM

Ученые со всего мира стремятся не только улучшить функциональные особенности роботизированных протезов, а придать им реалистичный вид. Американские исследователи во главе с Женан Бао (Zhenan Bao) из Стэнфордского университета (Stanford University) в Калифорнии, создали нанокожу для медицинских протезных устройств . Это полимерный материал обладает высокой гибкостью, прочностью, электропроводностью и чувствительностью к давлению (считывание сигналов по типу сенсорных панелей).

Нанокожа из Stanford University

Роботы для медицинских учреждений и роботы-помощники:

Больница будущего - больница с минимальным человеческим персоналом. С каждым днем в медицинские учреждение все больше внедряются роботы-медсестры, роботы-медбратья и роботы телеприсутствия для контакта с лечащим врачом. Например, в Японии уже давно работают роботы-санитары от Panasonic , роботы-помощники Human Support Robot (HSR) от компании Toyota , ирландский робот-медбрат RP7 от разработчика InTouch Health, корейский робот KIRO-M5 и многие другие. Такие устройства представляют собой платформу на колесах и способны измерять пульс, температуру, контролировать время приема пищи и медикаментов, своевременно оповещать о проблемных ситуациях и необходимых действиях, поддерживать связь с живым медицинским персоналом, собирать разбросанные или упавшие вещи и т.д.

Роботы-санитары от Panasonic

Робот-помощник HSR от Toyota

Робот медбрат RP7 от InTouch Health

Робот-медсестра KIRO-M5

Зачастую, в условиях непрерывного медицинского обслуживания, врачи физически не могут уделить достаточно внимания пациентам, особенно если они находятся на большом расстоянии друг от друга. Разработчики роботизированной медицинской техники постарались и создали роботов-телеприсутствия (например, LifeBot 5 , или RP-VITA от компании iRobot и InTouch Health). Автоматизированные системы позволяют передавать аудио и видео сигнал через сети 4G, 3G, LTE, WiMAX, Wi-Fi, спутниковую или радиосвязь, измерять сердцебиение пациента, кровяное давление и температуру тела. Некоторые устройства могут выполнять электрокардиографию и УЗИ, имеют электронный стетоскоп и отоскоп, перемещаются в больничных коридорах и палатах, огибая препятствия. Такие медицинские помощники обеспечивают своевременный уход и обрабатывают клинические данные в режиме реального времени.

Робот телепристутсвия LifeBot 5

Робот телепристутсвия RP-VITA

Для безопасной транспортировки образцов, лекарств, оборудования и расходных материалов в больницах, лабораториях и аптеках с большим успехом используются роботы-курьеры. Помощники имеют современную навигационную систему и бортовые датчики, позволяющие с легкостью передвигаться в помещениях со сложной планировкой. К яркими представителям подобных устройств можно отнести американские RoboCouriers от компании Adept Technology и Aethon из Медицинскомго центра University of Maryland , японские Hospi-R от Panasonic и Terapio от компании Adtex .

Робот курьер RoboCouriers от Adept Technology

Робот курьер Aethon

Робот курьер Hospi-R от Panasonic

Робот курьер Terapio от Adtex


Отдельным направлением развития роботизированной медицинской техники является создание колясок-трансформеров, автоматизированных кроватей и специальных транспортных средств для инвалидов. Вспомним о таких разработках, как кресло с резиновыми гусеницами Unimo от японской компании Nano-Optonics , (Chiba Institute of Technology) под руководством доцента Шуро Накаджима (Shuro Nakajima), использующая ноги-колеса для преодоления лестниц или канав, робоколяска Tek Robotic Mobilisation Device от компании Action Trackchair. Компания Panasonic готова решить проблему переноса больного с кресла на кровать, требующую больших физических усилий медицинского персонала. Это устройство самостоятельно превращается из кровати в кресло и наоборот, когда это необходимо. Компания Murata Manufacturing Co объединилась с Kowa, что бы сделать инновационное медицинское транспортное средство Electric Walking Assist Car , представляющее собой автономный велосипед с маятниковой системой управления и гироскопом. Эта разработка в основном предназначена для престарелых и людей, которые имеют проблемы с ходьбой. Отдельно отметим серию японских роботов RoboHelper от Muscle Actuator Motor Company , которые являются незаменимыми помощниками медсестрам по уходу за лежачими пациентами. Аппараты способны поднять человека с кровати в сидячее положение или забрать физические отходы лежачего человека, исключая использование горшков и уток.

Нанороботы:

Нанороботы или наноботы - роботы размером с молекулу (менее 10 нм), способные двигаться, считывать и обрабатывать информацию, а также программироваться и выполнять определенные задачи. Это совершенно новое направление в развитии робототехники. Сферы использования таких устройств: ранняя диагностика рака и целенаправленная доставка лекарств в раковые клетки, биомедицинский инструментарий, хирургия, фармакокинетика, мониторинг больных диабетом, производство посредством молекулярной сборки нанороботами устройства из отдельных молекул по его чертежам, военное применение в качестве средств наблюдения и шпионажа, а также в качестве оружия, космические исследования и разработки и др.

На данный момент известны разработки медицинских микроскопических роботов для выявления и лечения рака от южнокорейских ученых , биороботы от ученых из университета штата Иллинойс , которые могут перемещаться в вязких жидкостях и биологических средах самостоятельно, прототип морской миноги - наноробот Cyberplasm , который будет передвигаться в организме человека, выявляя заболевания на ранней стадии, нанороботы инженера Адо Пуна , которые могут путешевствовать по кровеносной системе, доставлять лекарства, брать анализы и удалять сгустки крови, магнитный наноробот Spermbot - разработка ученого Oliver Schmidt и его коллег из Института интегративной нанонаук в Дрездене (Германия) для достаки спермы и лекарств, наноботы для замены белков в организме от ученых из Венского университета (University of Vienna) совместно с исследователями из Университета природных ресурсов и наук о жизни Вены (University of Natural Resources and Life Sciences Vienna).

Микророботы Cyberplasm

Нанороботы Адо Пуна

Магнитный наноробот Spermbot

Нанороботы для замены белков


Другие специализированные медицинские роботы:

Существует огромное количество специализированных роботов, выполняющих отдельные задачи, без которых невозможно представить себе эффективное и качественное лечение. Одними из таких устройств являются роботизированный кварцевый аппарат Xenex и робот-дезинфектор TRU-D SmartUVC от Philips Healthcare . Несомненно, такие аппараты просто незаменимые помощники в борьбе с внутрибольничными инфекциями и вирусами, которые служат одной из самых серьезных проблем в медицинских учреждениях.

Роботизированный кварцевый аппарат Xenex

Робот-дезинфектор TRU-D SmartUVC от Philips Healthcare

Сбор анализа крови - наиболее распространенная медицинская процедура. Качество при выполнении процедуры зависит от квалификации и физического состояния медицинского работника. Зачастую попытка взять кровь с первого раза заканчивается неудачей. Поэтому для решения этой проблемы был разработан робот Veebot , имеющий компьютерное зрение, с помощью которого он определяет местоположение вены и аккуратно направляет туда иглу.

Робот для забора крови Veebot

Робот для изучения рвотного процесса Vomiting Larry позволяет исследовать норовирусы, приводящие к 21 миллиону заболеваний, включающие симптомы тошноты, водянистой диареи, боли в животе, потери вкуса, общей вялости, слабости, боли в мышцах, головнуюой боли, кашля, субфебрильной температуры, и, конечно, сильной рвоты.

Робот для изучения рвотного процесса Vomiting Larry

Самым популярным роботом для детей остается PARO - пушистая детская игрушка в виде гренландского тюленя. Терапевтический робот может шевелить головой и лапами, распознавать голос, интонацию, прикосновения, измерять температуру и освещенность в комнате. Его конкурентом является огромный обнимающийся плюшевый робот-медведь HugBot , который замеряет пульс и кровяное давление.

Терапевтический робот PARO

Робот-медведь HugBot

Отдельная ветка медицины, занимающаяся диагностикой, лечением болезней, травм и расстройств у животных - это ветеринария. Для обучения квалифицированных специалистов в этой области Колледж ветеринарной медицины в разработке роботов-домашних животных создает уникальных роботов-тренажеров в виде собак и кошек . Для приближения к точной модели поведения животного программное обеспечение разрабатывается отдельно в Центре перспективных вычислительных систем при Корнельском университете (САС).

Роботы-тренажеры в виде собак и кошек

Эффективность роботов в медицине:

Очевидно, что применение роботов в медицине носит ряд преимуществ перед традиционным лечением с участием человеческого фактора. Использование механических рук в хирургии предотвращает многие осложнения и ошибки при операциях, сокращают послеоперационный восстановительный период, уменьшают риск заражения и инфицирования больного и персонала, исключают большую потерю крови, снижают болевые ощущения, способствуют лучшему косметическому эффекту (небольшие рубцы и шрамы). Роботизированные медицинские помощники и реабилитационные роботы позволяют уделить пристальное внимание к пациенту во время лечения, контролировать процесс выздоровления, ограничить живой персонал от трудоемкой и неприятной работы, позволить больному чувствовать себя полноценным человеком. Инновационные методы лечения и оборудование с каждым днем приближают нас к более здоровой, безопасной и долгой жизни.

С каждым годом мировой рынок медицинских роботов пополняется новыми устройствами и, несомненно, растет. По данным исследовательской компании Research and Markets, к 2020 году рынок только одних реабилитационных роботов, биопротезов и экзоскелетов вырастит до 1,8 млрд. долларов США. Главным бумом медицинских роботов ожидается после принятия единого стандарта ISO 13482 , который станет сводом правил для элементов конструкции, материалов и программного обеспечения, применяемого в устройствах.

Заключение:

Без сомнения можно сказать, что медицинские роботы- это будущее медицины. Применение автоматизированных систем значительно сокращает врачебные ошибки, уменьшает дефицит медицинского персонала. Наноробототехника помогает преодолеть тяжелые заболевания и предотвратить осложнения на ранней стадии, широко применять эффективные нанолекарства. В течении ближайших 10-15 лет медицина ступит на новый уровень с использованием роботизированного обслуживания. К сожалению, Украина находится в плачевном состоянии в отношении этой отрасли развития. К примеру, в России в Екатеринбурге знаменитый робот-хирург "Da Vinci" провел свою первую операцию еще в 2007 году. А в 2012 году президент Дмитрий Анатольевич Медведев поручил Минздраву России вместе с Минпромторгом проработать вопрос по развитию новых медицинских технологий с применением робототехники. Эту инициативу поддержала Российская академия наук. Реалия такова, что при отсутствии реальной поддержки власти Украины в развитии области медицинской робототехники, наше государство с каждым годом отстает от других цивилизованных стран. Отсюда следует показатель уровня развития страны в целом, ведь забота о здоровье и жизни гражданина, упомянутая в главном законе - Конституции Украины, является "наивысшей социальной ценностью".

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Рассмотрение принципа работы медицинского робота "Да Винчи", позволяющего хирургам выполнять сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Применение роботов и современных нанотехнологий в медицине и их значение.

    реферат , добавлен 12.01.2011

    Описание истории развития робототехники и применения ее в хирургических операциях на примере программно-управляемого автоматического манипулятора Да Винчи с инструментом Endo Wrist. Создание плавающей капсулы с камерой и эндолюминальной системы ARES.

    реферат , добавлен 07.06.2011

    Правильная и своевременная обработка рук как залог безопасности медицинского персонала и пациентов. Уровни обработки рук: бытовой, гигиенический, хирургический. Основные требования к антисептикам для рук. Европейский стандарт обработки рук EN-1500.

    презентация , добавлен 24.06.2014

    Применение в медицине микроскопических устройств на основе нанотехнологий. Создание микроустройств для работы внутри организма. Методы молекулярной биологии. Нанотехнологические сенсоры и анализаторы. Контейнеры для доставки лекарств и клеточной терапии.

    реферат , добавлен 08.03.2011

    Оказание первой медицинской помощи при несчастных случаях, бедствиях и авариях. Общие правила переноски и подъема пострадавших на носилках и без них при различны травматических повреждениях. Способы выноса пострадавших из очага бедствия или аварии.

    реферат , добавлен 27.02.2009

    Этиология, пато- и морфогенез рака прямой кишки. Маркеры онкогенеза, их прогностическая значимость. Основные критерии оценки результатов иммуногистихимического исследования и результаты состояния РПК у пациентов после радикального хирургического лечения.

    дипломная работа , добавлен 19.05.2013

    Общая характеристика и отличительные признаки различных методик обследования пациентов, используемых в современной медицине. Порядок и инструментарий для проведения обследования. Понятие и причины, разновидности одышки, направления ее исследования.

    реферат , добавлен 12.02.2013

    Разнообразие интересов и талантов Леонардо да Винчи. Проведение анатомических вскрытий художником, создание системы изображений органов и частей тела в поперечном сечении. Исследования в области сравнительной анатомии, содержание дневниковых записей.

    презентация , добавлен 28.10.2013